
BEHAVIOR FLEXIBILITY FOR
AUTONOMOUS UNMANNED AERIAL

SYSTEMS

THESIS

Taylor B. Bodin, Second Lieutenant, USAF

AFIT-ENG-MS-18-M-011

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-18-M-011

BEHAVIOR FLEXIBLITY

FOR AUTONOMOUS UNMANNED AERIAL SYSTEMS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Taylor B. Bodin, B.S.E.E.

Second Lieutenant, USAF

March 2018

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-18-M-011

BEHAVIOR FLEXIBLITY

FOR AUTONOMOUS UNMANNED AERIAL SYSTEMS

THESIS

Taylor B. Bodin, B.S.E.E.
Second Lieutenant, USAF

Committee Membership:

Maj Jason M. Bindewald, Ph. D.
Chair

Dr. Gilbert L. Peterson
Member

Dr. Robert C. Leishman
Member

Dr. David R. Jacques
Member

AFIT-ENG-MS-18-M-011

Abstract

Autonomous unmanned aerial systems (UAS) could supplement and eventually

subsume a substantial portion of the mission set currently executed by remote pilots,

making UAS more robust, responsive, and numerous than permitted by teleoperation

alone. Unfortunately, the development of robust autonomous systems is difficult,

costly, and time-consuming. Furthermore, the resulting systems often make little

reuse of proven software components and offer limited adaptability for new tasks. This

work presents a development platform for UAS which promotes behavioral flexibility.

The platform incorporates the Unified Behavior Framework (a modular, extensible

autonomy framework), the Robotic Operating System (a RSF), and PX4 (an open-

source flight controller). Simulation of UBF agents identify a combination of reactive

robotic control strategies effective for small-scale navigation tasks by a UAS in the

presence of obstacles. Finally, flight tests provide a partial validation of the simulated

results. The development platform presented in this work offers robust and responsive

behavioral flexibility for UAS agents in simulation and reality.

This work lays the foundation for further development of a unified autonomous

UAS platform supporting advanced planning algorithms and inter-agent communi-

cation by providing a behavior-flexible framework in which to implement, execute,

extend, and reuse behaviors. The contributions within have been presented at the

2017 SOCHE STEM-Cyber Research Symposium, the 2017 ION Joint Navigation

Conference, and the 2018 SSC Pacific Naval Applications of Machine Learning Con-

ference.

iv

Acknowledgements

I would like to offer my deepest appreciation to my advisors, both present and

past, for their guidance, encouragement, and patience. And to my wife, your love

and support sustained me through this journey. I couldn’t have done it without you.

Thank you.

Taylor B. Bodin

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xi

I. Introduction . 1

1.1 Research Motivation . 2
1.2 Research Questions and Hypothesis . 4
1.3 Limitations and Assumptions . 6
1.4 Thesis Organization . 7

II. Background . 9

2.1 Autonomous Robotic Paradigms . 10
2.1.1 Hierarchical Paradigm . 10
2.1.2 Reactive Paradigm . 11
2.1.3 The Unified Behavior Framework . 13
2.1.4 Related Work . 14
2.1.5 Hybrid Deliberative/Reactive Paradigm . 16
2.1.6 Summary . 17

2.2 Control of Multirotor Aerial Vehicles . 18
2.2.1 Multirotor Dynamics . 19
2.2.2 PX4 and Ardupilot Firmware . 21

2.3 Robotic Software Frameworks . 22
2.3.1 Features of Robotic Software Frameworks . 23
2.3.2 Summary . 33

III. Methodology . 34

3.1 Test Item Description . 34
3.1.1 3DR X8+ Coaxial Octorotor . 36
3.1.2 Experimental Apparatus . 37
3.1.3 Ground Control Station . 37
3.1.4 Communications links . 38

3.2 UBF Implementation in ROS . 38
3.2.1 ROS System Description . 39
3.2.2 UBF Agent Node . 41
3.2.3 The Controller Class . 42
3.2.4 The Behavior Class . 42

vi

Page

3.2.5 The Arbiter Class . 45
3.2.6 The Action Class . 47
3.2.7 The State Class . 48
3.2.8 Implemented Agents . 49
3.2.9 Summary . 51

3.3 Description of Navigation Tasks . 52
3.4 Experiment 1: Arbiter Logic and Organization Effect

on Simulated Agent Performance . 55
3.4.1 Procedure . 56
3.4.2 Experimental Factors . 57
3.4.3 Constant Factors . 59
3.4.4 Response Variables . 62
3.4.5 Nuisance Factors . 62
3.4.6 Known/Suspected Interactions . 63
3.4.7 Assumptions . 63

3.5 Experiment 2: Flight Test Validation of the
Behavior-Flexible UAS Development Platform . 64
3.5.1 Procedure . 65
3.5.2 Experimental Factors . 67
3.5.3 Constant Factors . 67
3.5.4 Response Variables . 70
3.5.5 Nuisance Factors . 71
3.5.6 Assumptions . 71
3.5.7 Limitations . 72
3.5.8 Summary . 73

IV. Results . 74

4.1 Experiment 1: Arbiter Logic and Organization Effect
on Simulated Agent Performance . 75
4.1.1 Static obstacle navigation results . 75
4.1.2 Dynamic navigation results . 78
4.1.3 Barrel Race results . 82
4.1.4 Discussion and Summary . 86

4.2 Experiment 2: Flight Test Validation of the
Behavior-Flexible UAS Development Platform . 88
4.2.1 Controller Performance Comparison Results 88
4.2.2 Agent Performance Comparison Results . 91
4.2.3 Discussion and Summary . 95

V. Conclusion . 97

5.1 Summary . 97
5.2 Future Work . 100

vii

Page

5.3 Final Remarks . 101
Bibliography . 102

viii

List of Figures

Figure Page

1. The deliberative paradigm . 11

2. The reactive paradigm . 12

3. UML class diagram of the Unified Behavior
Framework [1]. 15

4. The hybrid deliberative/reactive . 17

5. The standard reference frames and axis for multirotor
UAS . 19

6. Typical control loop structure for a multirotor UAS
flight controller [2, 3]. 20

7. The 3DR X8+ coaxial multirotor UAS . 35

8. Diagram showing the organization of nodes within the
ROS system. 40

9. Class hierarchy of implemented atomic behaviors . 43

10. Class hierarchy of implemented composite behaviors 44

11. Class hierarchy of implemented arbiters . 46

12. Example arbitration of an action set . 47

13. UML class diagram of the action class . 48

14. The Navigate behavioral hierarchy . 50

15. The Pass behavioral hierarchy . 51

16. Layout of obstacles in the static obstacle navigation task. 53

17. Layout of obstacles in the dynamic obstacle navigation
task. 54

18. Layout of obstacles in the barrel race course with
example agent trajectory. 55

19. Software-in-the-loop network diagram . 57

ix

Figure Page

20. Mean collision duration per run of the static obstacle
navigation task . 76

21. Mean time to complete the static obstacle navigation task 77

22. Mean collision duration per run of the dynamic obstacle
navigation task . 79

23. Mean time to complete the dynamic obstacle navigation
task . 79

24. Comparison of mean completion time between the static
and dynamic obstacle navigation tasks . 81

25. Comparison of mean collision duration per run between
the static and dynamic obstacle navigation tasks . 81

26. Mean time to complete the barrel race task . 83

27. Mean collision duration per run of the barrel race task 83

28. Comparison of Agent VS/P trajectory (top) with Agent
VS/VS (bottom) over 25 runs. 87

29. Comparison of simulated Agent VS trajectory with
actual trajectory on the static navigation task. 92

30. Comparison of simulated Agent VS trajectory with
actual trajectory on the dynamic navigation task. 92

31. Comparison of Agent VS/P and Agent VS/VS
trajectory in simulation and during flight test on the
barrel race task. 93

x

List of Tables

Table Page

1. Previous applications of the UBF related to this work. 16

2. Summary of Robotic Software Frameworks Surveyed. 26

3. Comparison of RSFs Surveyed Using the Kramer
Framework. 32

4. Experimental factors for the navigation-based tasks. 58

5. Experimental factors for the barrel race task. 58

6. Constant factors internal to the UBF . 60

7. Constant factors external to the UBF . 61

8. Response variables measured in the arbiter variation
experiment (IQ3). 62

9. Constant factors internal to the UBF . 68

10. Constant factors external to the UBF . 69

11. Requirements used to determine system safety, stability,
and compliance with testing regulations (IQ4). 70

12. Comparison metrics used to determine the similarity of
the simulated and real agent behavior (IQ5). 70

13. Statistical summary of mean completion time on the
static obstacle task. 77

14. Statistical summary of mean collision duration on the
static obstacle task. 78

15. Statistical summary of mean completion time on the
dynamic obstacle task. 80

16. Statistical summary of mean collision duration on the
dynamic obstacle task. 80

17. Statistical summary of mean completion time on the
barrel race task. 84

xi

Table Page

18. Statistical summary of mean collision duration on the
barrel race task. 85

19. Controller vertical motion performance statistics
comparison between an emulated and real controller. 88

20. Controller horizontal motion performance statistics
comparison between an emulated and real controller. 89

21. Controller rate statistics comparison between an
emulated and real controller. 90

22. Comparison of real and simulated agent mean
completion time on several navigation tasks. 94

23. Comparison of real and simulated agent mean collision
duration on several navigation tasks. 94

xii

BEHAVIOR FLEXIBLITY

FOR AUTONOMOUS UNMANNED AERIAL SYSTEMS

I. Introduction

Autonomous vehicles represent one of the most disruptive technological innova-

tions in modern warfare [4, 5]. Military applications for autonomous vehicles are

numerous and varied; encompassing intelligence, surveillance, reconnaissance, search

and rescue, command and control, cargo and munition delivery, and even the mu-

nitions themselves [4]. Autonomous vehicles are a significant opportunity for the

Department of Defense to reduce man-hours, cost, and risk to human operators. As

with all disruptive technologies, however, autonomous vehicles also pose a significant

risk to large, successful, and entrenched militaries [5]. These vehicles are becoming

more intelligent and capable while simultaneously becoming relatively inexpensive to

mass produce, placing them within the reach of nations and many non-state actors.

Swarms of intelligent, weaponized vehicles hold cornerstone systems vital to United

States military supremacy at risk. Defending a lumbering aircraft carrier, an air

base, or even a satellite constellation against an onslaught of hundreds or thousands

of small, intelligent drones is a daunting technical challenge that must be addressed

in the coming decades [5].

While few operational examples of autonomous, military vehicles exist today, ad-

versaries are aggressively pursuing policies to gain the advantage in this new domain.

China has issued the Next Generation Artificial Intelligence Development Plan [6]

with the goal of “becoming a global innovation center” by 2030. Specifically, the plan

details China’s intent to invest billions of dollars in AI research and development, the

1

emerging AI economy, and products using AI technology including “smart vehicles”.

Russia is also aware of the huge strategic potential of AI. In an address to thousands

of Russian students, Vladimir Putin said, “Whoever becomes the leader in [AI] will

become ruler of the world” [7]. While such remarks might seems exaggerated, the dis-

ruptive effect of autonomy is evident in the private sector with the rise of tech giants

like Amazon, Google, and Facebook, who are developing and employing autonomous

systems to tremendous effect [8, 9].

Given the disruptive potential of autonomous vehicles and world-wide interest in

their military applications, it is of the utmost strategic importance that the United

States and its allies lead in the research, development, and adoption of autonomous

systems. Given its recent history of technological supremacy, it may seem that the

U.S. Department of Defense is well positioned to maintain its preeminence. However,

the current acquisitions process is too costly and slow to keep pace with the rapid

progress being made in the field [10, 11, 12]. For example, the Long Range Anti-Ship

Missile (LRASM) is a prime case study for the noncompetitive autonomous systems

acquisitions process in action. The system itself is an extremely capable autonomous

munition, capable of navigating in GPS denied environments, discriminating targets

from non-targets, evasive maneuver, and targeted strikes [13]. However, its “acceler-

ated acquisition” is still in progress after 7 years and an estimated program cost of

1 billion dollars for a mere 110 units [14]. If these metrics are indicative of future

procurement programs, they set a low bar for adversaries to meet or exceed.

1.1 Research Motivation

To keep pace with adversaries, the procurement and employment of future au-

tonomous vehicles must be more efficient. While many factors influencing the ac-

quisition and life cycle management of autonomous systems are political in nature,

2

the modularity and behavior flexibility of a platform are key technical characteris-

tics which contribute to efficiency in employment. Modularity describes the ease with

which system components (both in hardware and software) can be extended, modified,

reused, and interchanged. behavior flexibility regards the number of heterogeneous

behavior the platform can competently perform. Behaviors can be described in terms

of their: (1) robustness, the degree to which the behavior can cope with uncertainty

in a task ; and (2) adaptability, the ease with which the behaviors can be extended

or reused to perform new tasks. The LRASM for instance would likely score low in

modularity and adaptability, since the software is closed-source and highly optimized

for its domain, but score well in robustness given its ability to perform despite a

high degree of uncertainty in its task. If systems are designed to be modular and

behaviorally-flexible, development cost per task drops exponentially as the number

of tasks the system can accomplish increases.

With respect to physical vehicles, unmanned aerial systems (UAS) are effective,

behavior-flexible platforms due to their high mobility in open environments. A multi-

copter equipped with a high resolution camera, for instance, can perform a large, and

growing, set of tasks, including 3D mapping, reconnaissance, surveying, and aerial

photography. To date, many applications of UAS rely on teleoperation or basic au-

tomation [15]. The creation of autonomous UAS has proven to be an extremely

demanding engineering challenge and is currently an area of active research. Solu-

tions must fuse sensor inputs from heterogeneous, noisy, and often unreliable physical

devices; reason about the state of dynamic and ill-defined environments; plan actions;

and execute those plans on hardware. Due to the nature of flying systems, the above

must be accomplished in near real-time and within restrictive size, weight, and power

requirements. While many exciting and capable applications of artificial intelligence

are flying on research UAS today, progress has been hindered by high levels of dupli-

3

cation of effort [16, 17, 18]. Great strides have been made in the creation of capable

aerial robotics platforms [19, 20, 21] which allow users to quickly develop and de-

ploy new robotic hardware, but autonomous UAS are lacking an analogous platform

allowing the development and reuse of intelligent agents.

The Unified Behavior Framework (UBF)[1] provides a design strategy to create

modular and extensible behavior-based robotic agents. For many years, behavior-

based approaches have produced robust and responsive intelligent agents. However,

in robotic applications, behavior logic is often inextricably tied to the underlying con-

trol mechanisms making reuse, modification, and extension of behaviors difficult. The

UBF was developed to address these limitations by abstracting behavior logic from

the underlying robotic controllers. Behavior abstraction allows developers to easily

reuse and modify behaviors to extend an existing behavior-based controller or to

quickly create a new controller. The efficacy of the UBF was demonstrated through

successful implementation on a variety of platforms [22, 23, 1]. However, overall

agent behavior-flexibility was limited by their ground-based platforms. Open-source

robotic software frameworks (RSF), such as the Robot Operating System (ROS) [21]

and flight controllers such as the PX4 autopilot [20], currently offer a rich appli-

cation programming interface (API) for UAS applications that could facilitate the

integration of UBF behavior logic with a variety of sensors and physical vehicle types

[24, 25, 26]. In addition to being the first use of the UBF on a UAS before, the inte-

gration of these technologies offers tremendous potential as behavior-flexible platform

for autonomous agents on UAS.

1.2 Research Questions and Hypothesis

The objective of this research is to answer the following question, “Is it possible to

develop a behavior-flexible development platform for autonomous UAS agents using

4

open-source software components?” It is hypothesized that if the UBF is integrated

with a suitable robotic software framework (RSF), then the resulting framework pro-

duces agents that are viable for real-world use, robust to uncertainty in the environ-

ment, and adaptable to different behavior. Five investigative questions (IQs) were

devised to test this hypothesis and are listed below.

• IQ1 - What is the current state-of-the-art with regard to RSFs and open-source

flight controllers for small UAS? A wide variety of RSFs and flight controllers

are currently available. A survey of these components is intended to identify

state-of-the-art components suitable for a behavior-flexible UAS development

platform.

• IQ2 - What design produces a behavior-flexible development platform? Based

on the literature review, a design is proposed which integrates the UBF with the

Robotic Operating System (ROS), a powerful RSF, and PX4, a leading flight

controller. This setup provides 2 benefits. First, the addition of new sensors

and actuators is simplified by the ROS communication middleware. Second,

the platform is portable to many different UAS types, including fixed-wing,

multi-rotor, and vertical takeoff and landing (VTOL).

• IQ3 - Which reactive robotic paradigm, or combination of paradigms, produces

behavior-flexible agents with the highest fitness on navigation tasks? The de-

velopment platform supports agents based on novel combinations of traditional

reactive robotic paradigms. As the first application of the UBF on UAS, an

assessment of agent fitness, robustness, and adaptability is intended to identify

effective, behavior-flexible control strategies for autonomous UAS.

• IQ4 - Is the system safe, stable, and compliant with testing regulations? Vehi-

cles using the development platform will not be authorized to operate without

5

demonstrating regulatory compliance and basic functionality. A flight test pro-

gram using the build-up approach is necessary to safely demonstrate agents are

functional and compliant.

• IQ5 - To what degree does simulated agent behavior predict actual agent be-

havior? Simulation provides a safe, low-cost, and convenient environment to

validate and tune agent behavior. The usefulness of simulated results depends

on how closely simulation reflects reality.

By answering the investigative questions outlined above, this research will be

able to design and validate a behavior-flexible development platform comprised of

state-of-the-art components. Using the platform, an assessment of UAS-based agent

performance on navigation tasks will yield important insights for the design of effective

reactive-robotic control architectures.

1.3 Limitations and Assumptions

In order to form a valid logical argument answering the research question, several

simplifying assumptions were made. The first assumption is that RSFs and flight

controllers can be objectively ranked to make design decisions. There is no objective

basis on which to rank RSFs or flight controllers which complicates establishing the

state-of-the-art. For this research, a comparison framework from the literature was

used to compare actively developed projects. It is a assumed that the RSF with the

most desirable proprieties for the development platform constitutes the state-of-the-

art. Design considerations were made on the basis of this survey and the particular

needs of the development platform.

Second, this research was inherently limited in scope by the size of the design and

test spaces. The test space was reduced to three navigation tasks designed to reflect

6

common features of many navigation tasks. It is assumed that results from these test

cases generalize to similar tasks. The design space was reduced by only manipulating

a focused subset of the design parameters. It is assumed that the interaction effects

between constant parameters and experimental parameters are relatively small. If

this assumption is true, then agent fitness is mostly determined by the experimental

factors rather than any particular set of constant parameters.

Third, it is infeasible to fully validate the safety, stability, and compliance of

the platform because of the nature of emergence and the limited number of flight

test sorties. It is assumed that the risk posed by unexpected or unstable behavior is

manageable and that a partial validation is sufficient to demonstrate that the platform

is viable in an experimental flight test setting.

Finally, several assumptions were made about the portability of the development

platform. It is assumed that no modifications would be necessary if porting to another

multirotor type UAS if: (1) behaviors operate within the flight envelope of the target

vehicle and (2) the flight controller is properly tuned for the target vehicle. It is

also assumed that little modification would be needed to port the platform to other

UAS. This assumption relies on the fact that the PX4 flight controller can effectively

control multiple vehicle types using the same set of commands.

1.4 Thesis Organization

The following chapters document the verification and validation of the proposed

platform. Chapter II provides background and context for the problem. Chapter II

begins with a synopsis of the history of autonomous robotics and a discussion of the

UBF. Next, the general characteristics of RSFs are discussed along with a comparison

of RSFs under active development. This comparison is used to assess the potential

behavior-flexibility offered by each RSF to provide justification for design decisions.

7

Chapter II concludes with an overview of behavior based robotics, the UBF, and

related work utilizing the UBF. Chapter III describes the implementation and test

methodology for the proposed architecture. The chapter begins by detailing the

hardware and software implementation of the platform. A methodology is proposed

which attempts to determine if the system is: (1) compliant with testing regulations;

(2) robust to dynamic and unstructured tests; and (3) adaptable to new behaviors. An

exploration of the effect of parameter variation on agent performance is conducted to

determine configurations that are well suited to this new domain for the UBF. Chapter

IV presents the results and analysis of the simulated and flight test experiments with

a discussion of their significance. Finally, Chapter V summarizes the findings of

this research effort and provides avenues for future research and development for the

platform.

8

II. Background

The creation of intelligent, flying robots is a uniquely challenging engineering

problem. For an autonomous robotic agent to reliably accomplish tasks it must,

at a minimum, fuse sensor input from a number of heterogeneous, noisy, and often

unreliable physical devices, use that data to make sense of its environment, plan

actions, and execute those plans on hardware [27]. This challenge is even greater for

UAS due to the nature of flying systems. High speeds, environmental variation such

as weather, and relatively large operating areas create a dynamic and unpredictable

operating environment. To perform safely and rationally, the vehicle must accomplish

most of the above tasks in near real-time and within restrictive size, weight, and power

requirements. Despite these challenges, advancements in battery energy density and

processing capability have precipitated rapid growth in SUAS commercial products,

technology, and research in recent years [28]. As the complexity and number of

applications for these systems grow, the need for a behavior-flexible development

platform for UAS is increasingly apparent [29, 4].

Such a behavior-flexible development platform must include three fundamental

components of an autonomous UAS: a flexible autonomy framework, a flight con-

troller, and a robotic software framework (RSF) to tie the two together. The purpose

of this chapter is to provide the reader with sufficient background to understand the

role of each component and resolve IQ1 by surveying the candidate components to

establish the current state-of-the-art. This chapter opens with a brief review of au-

tonomous robotic paradigms, including deliberative, behavior-based, and three-layer

architectures. Next, the Unified Behavior Framework is presented as a behavior-based

autonomy framework which is well suited for use in UAS. Then, a short primer on

the control of multi-rotor UAS is presented and two prominent flight controllers are

introduced. Next, a discussion of the general features of RSFs provides context for a

9

survey of several RSFs currently under active development. At the end of the chap-

ter, the selected components are presented with justification for their inclusion in the

final architecture.

2.1 Autonomous Robotic Paradigms

This section provides a brief history and introduction of the fundamental paradigms

of autonomous robotics. The first section overviews the hierarchical paradigm, a top-

down approach to artificial intelligence. Next, is the reactive paradigm is described

as a response to limitations of a deliberative approach. The UBF is then introduced

as a behavior-flexible and extensible framework with which to create reactive robotic

agents. Work related to the UBF, including its implementation and simulation in

multiple environments, is also discussed. The section concludes with an overview

hybrid architectures which combined elements of the aforementioned paradigms and

are currently the state of the art in autonomous robotics.

2.1.1 Hierarchical Paradigm.

The hierarchical or deliberative approach to autonomous control is the oldest of

the robotic paradigms and revolves around three primitives: sense, plan, and act [27].

First, the robot perceives the world through its sensors and creates a representation

of its environment called the world model. The robot then uses the world model to

plan a series of actions to get from its current state to a goal state. Finally, plans are

carried out in the act phase and begins the cycle again from the sense phase.

While the hierarchical paradigm is highly intuitive, it suffers from two major short-

comings. First, in a purely hierarchical architecture, the robot is unresponsive to the

environment during the planning and action phase. Since perception and planning are

typically computationally complex and non-deterministic in time, robots using this

10

approach are unresponsive to dynamic environments. Second, a top-down, symbolic

approach to artificial intelligence suffers from the frame problem. For the world model

to be useful, it needs to include all information relevant to the robot. First described

in [30], the frame problem describes the irreducible complexity of trying to build such

a world model. As the environment becomes more complex, the number of axioms

needed to sufficiently describe that environment grows so quickly that operating in a

realistic environment is infeasible [27]. Figure 1 depicts the arrangement of the sense,

plan, and act paradigms within a deliberative controller.

Sense Plan Act

Figure 1. The flow of information through the deliberative paradigm. Information is
first sensed. Then a plan is created based on an environmental representation created
from sensed data. Finally, the plan is carried out in the act phase.

2.1.2 Reactive Paradigm.

In response to the inherent limitations of the hierarchical paradigm, researchers

began pursuing bottom-up approaches to robotic autonomy. Braitenberg, in one of

the foundational papers of reactive robotics, proposes a set of imaginary robots called

vehicles. Braitenberg’s vehicles [31] are devoid of any form of environmental repre-

sentation and instead tie sensory input directly to motor outputs. Through a series of

vehicles of increasing complexity, Braitenberg illustrates that very complex behaviors

can emerge from stateless structures relying on simple mechanisms. Figure 2 depicts

this structure consisting of sensing linked to action through behaviors.

Brooks [32] created autonomous robots with control structures similar to those

imagined by Braitenberg using the subsumption architecture. The subsumption ar-

chitecture turns the horizontal, i.e. sequential, decomposition of functionality in

11

Sense Act

Figure 2. The flow of information through the reactive paradigm. Notice the absence
of the planning stage from the hierarchical paradigm. Sensed information is converted
into action with little to no state representation.

the hierarchical paradigm on its side. The resultant structure produces a vertical

hierarchy in which behaviors are capable of concurrent operation. Each behavior

is organized according to their level of competence in layers with low-level behaviors

handling “survival functions” and higher levels addressing the robot’s goals [27]. Each

behavior suggests actions concurrently with higher level behaviors subsuming lower

levels in the event of a conflict. Subsumption was successfully demonstrated on a

number of small, insect-like robots which were revolutionarily responsive and agile

for their time [32].

Due to the success of these new methodologies, researchers began exploring new

areas of behavior-based robotics in the late 1980’s and early 1990’s. One particu-

larly useful class of reactive architecture, especially for navigation based tasks, that

emerged from this era are potential field methodologies. First introduced by Ronald

Arkin [33], potential field methodologies work by modeling behaviors as a potential

field indicating the desired motor action at any point in the field. Whereas subsump-

tion achieved emergence by layering behaviors according to their priority, potential

field methodologies sum the fields produced by each behavior producing a complex

net potential field. Behaviors are defined according to a set a primitive field topologies

(i.e. uniform, tangential, radial, etc.) and magnitude profiles (i.e. constant, linear,

exponential, etc.). These methods have proven capable in real-world application, easy

to visualize, and straightforward to implement [27].

12

2.1.3 The Unified Behavior Framework.

Traditionally, behavior-based architectures like subsumption and potential field

methodologies are designed to operate within a narrow ecological niche and on one

platform. Once tuned for their environment, these controllers can achieve very good

results but are limited to the strengths of the chosen architecture and are difficult to

extend to additional functionality. Furthermore, as the controller competency grows

to accommodate more functionality, the complexity of the control quickly reaches

a capability ceiling since traditional architectures lack a mechanism for managing

complexity [34].

To address these limitations, Woolley, et. al. [34] introduced the UBF for the

construction of reactive controllers which are extensible, architecture agnostic, and

manage the complexity of highly competent controllers. The UBF is a software en-

gineering pattern which applies the composite and strategy pattern [35] to the de-

velopment of behavior-based controllers. Using the strategy pattern [35], the UBF

abstracts behavior logic from the underlying robotic controller by encapsulating it

into a standardized interface. Since the controller knows how to use this abstraction,

any concrete implementation, regardless of its reactive architecture, is viable. This

implies that not only can disparate architectures be used within the same architec-

tures, but they can be swapped out at runtime as necessary, thus freeing the controller

from the strengths or weaknesses of any one reactive architecture.

By using the composite pattern [35], the UBF allows designers to create complex,

mediated hierarchies of behaviors. Two or more behaviors can be combined into a

composite behavior as depicted in the class diagram in Figure 3. Each child behavior

suggests an action based on the current state. These action recommendations form

A, the set of proposed actions. An arbiter, another flexible component in the UBF,

uses some arbitration mechanism to generate a’, a single action, from A. Then a’ can

13

then be used in another composite behavior to form another layer in the hierarchy if

desired. This design pattern promotes reuse of subcomponents in the hierarchy and

provides a mechanism for managing the complexity of sophisticated controllers [34].

2.1.4 Related Work.

The UBF has been previously demonstrated in several robotics applications. Wool-

ley in [34] introduces the UBF and conducts several case studies to exhibit the ca-

pabilities of the framework. In the first two case studies, Woolley simulated UBF

agent controlled battle tanks in the Robocode robot battle environment. These ex-

periments highlighted the flexibility of UBF agents through structural variation of

the behaviors and arbitration elements. In his final case-study, Woolley implemented

the UBF on the Pioneer P2-AT8, a four-wheeled, mobile robot with sonar, LIDAR,

bump, and odometery sensors. To show the real-world viability of the UBF with hard

real-time constraint, the agent was sent high amounts of network traffic to simulate

high computational loads. Although the agent was not able to reliably maintain real-

time control, Woolley demonstrated that UBF controllers can execute at predictable

intervals given the low observed jitter for each behavior. In [36], Hooper applied the

UBF to the RoboCup Soccer Simulator, a multi-robot testing platform used in the

RoboCup robotics competition. Although Hooper did not apply the UBF to a real-

world platform, the ability of a team of agents utilizing the UBF to competitively play

soccer demonstrates the ability of the UBF to integrate into hybrid architectures and

handle complex tasks. In [37], Duffy reinforced this point by integrating the UBF into

a hybrid architecture. Three case study experiments were carried out in the Stage

simulation environment using a P2-AT8 robot in multiple configurations. In [22],

Lin implemented the UBF on the small Mini-WHEGSTMrobot. This application of

the UBF demonstrates the viability of the UBF in a deeply embedded, resource-

14

Controller

publishAction(action)

setBehavior(behavior)

genAction():action

Behavior

getState()

genAction(state):action

Composite

genAction(state):action

addBehavior(behavior)

removeBehavior(behavior)

setArbiter(arbiter)

Leaf

Behavior A Behavior B

Arbiter

evaluate(actionList):action

Figure 3. UML class diagram of the Unified Behavior Framework [1].

15

constrained environment. Finally, Roberson [23] simulated teams of fighter aircraft

in multiple mission environments using an architecture based on the UBF. This work

also demonstrates the usefulness of UBF based agents for multi-robot applications.

A summary of these related works is presented in Table 1.

Table 1. Previous applications of the UBF related to this work.

Author Simulation Platform RSF
Woolley[34] Robocode Pioneer P2-AT8 Player
Hooper[36] RCSS Multiple None
Duffy[37] Stage Multiple None
Lin[22] None Mini-WHEGSTM None

Roberson[23] OpenEaagles A2A Sims None

2.1.5 Hybrid Deliberative/Reactive Paradigm.

Although reactive architectures proved to be extremely capable in the early years

of autonomous robotics, the reactive paradigm as a whole is fundamentally limited

by its inability to remember past events or reason about the future states of the envi-

ronment [27]. For an autonomous system to avoid local minima, correct for degraded

performance, and generate plans, some elements of deliberative architectures needed

to be re-introduced. Thanks to increased use of concurrent processing techniques and

modular reactive controllers, hybrid architectures could be constructed which had the

responsiveness of pure reactive approaches and the long-term goal seeking and error

correcting capability found in hierarchical approaches [27]. These hybrid architectures

typically consist of three layers: a reactive controller granting responsiveness, a plan-

ning layer called the deliberator, and an intermediary layer called the sequencer [34].

The deliberative layer is responsible for maintaining the world model and generating

plans. Plans are interpreted by the sequencer which generates a sequence of behaviors

suitable for accomplishing the plan. Finally, the reactive controller executes this se-

quence. The hybrid deliberative/reactive paradigm represents the current dominant

16

paradigm in the field of autonomous robotics. By combining reactive and deliberative

approaches, hybrid architectures benefit from the strengths of both allowing for re-

sponsive, goal-seeking autonomous robots. Figure 4 depicts the conceptual structure

of the sense, plan, and act paradigms within a hybrid controller.

Sense

Plan

Act

Deliberator

Sequencer

Controller

Figure 4. The flow of information through the hybrid deliberative/reactive paradigm.
This paradigm possesses elements of both deliberative and reactive paradigms. Plans
are created from a environmental representation and then executed through a sequence
of behaviors.

2.1.6 Summary.

The Unified Behavior Framework is a flexible, extensible, and modular design

pattern to implement behavioral controllers. The UBF is a design framework that

applies common software engineering approaches to the development of behavior-

based controllers. Its chief contribution is to abstract behavior logic from actuator

controls and encapsulates them with a standardized interface. The modular behavior

elements can then be organized according to whatever behavior-based architecture

meets the needs of the designer best. Whereas traditional controllers typically only

use one architecture and one arbitration mechanism to decide on which recommended

17

action to take, a UBF based controller can utilize disparate architectural paradigms

and different arbitration mechanisms in the same hierarchy. In this hierarchy, lower

level behaviors send up action recommendations to an arbiter. These behaviors,

called composite behaviors, can then also be combined as desired to produce complex

emergent behavior and high levels of skill competency while managing the complexity

of the controller. While the UBF has been successfully demonstrated on several

mobile robots [22, 34, 36, 37], it has yet to be integrated within a larger RSF and

has not flown on a UAS. In general, behavior-based approaches have been shown

to be effective in producing the timely and robust responses necessary for the safe

operation of autonomous UAS. The UBF increases the flexibility of behavior-based

approaches by allowing developers to experiment, extend, and reuse their controllers

aboard different platforms. The following section introduces flight controllers which

are capable of executing UBF behaviors on a multirotor UAS.

2.2 Control of Multirotor Aerial Vehicles

Flight controllers, also commonly referred to as autopilots or flight management

units (FMU), are complex avionics systems which automate the control of UAS.

For autonomous UAS, flight controllers form the crucial link between software and

hardware by interpreting and executing agent actions. Flight controllers also estimate

the aircraft state, which consists of position, attitude, linear velocity, and angular

velocity, using accelerometer, gyroscopes, GPS, barometric, vision, and other sensor

data [38]. This section briefly describes the dynamics and control of multirotor UAS

and introduces two popular, open-source flight controller projects which constitute

the state-of-the-art in this area.

18

2.2.1 Multirotor Dynamics.

Figure 5 displays the standard reference frames used to define the state of a

multirotor aircraft..

Zb

Yb

Xbn

e

d

4

1

2
3

r

Xb

n
Xb

iv1

Yb

jv2

Figure 5. The standard reference frames and axis for multirotor UAS dynamics. The
body frame (right) is a transformation r from the inertial NED frame (left). Positive
rotations are shown for pitch (θ), roll (φ), and yaw (ψ) [2, 3].

The flight controller calculates control inputs to achieve a desired vehicle state also

known as a setpoint. In multirotor UAS, control is achieved through the differential

thrust of each rotor. Designing robust control laws is difficult because multirotors

are under-actuated systems, meaning there are fewer control inputs than outputs.

Additionally sensor data is noisy, and the aerodynamic models for multirotor vehicles

are only approximate [38, 2]. The most common solution to this problem is to employ

a nested loop structure like the one depicted in Figure 6.

A nested control loop structure simplifies the problem of controller design by

19

Position

Control Attitude

Control

Motor

Control

Multirotor

Position

Estimation

Attitude

Estimation

��h

�
d

�
d

�
d

��

��

��

v

�i

accelerometer, gyroscope, and magnetometer

accelerometer, gyroscope, VICON

Figure 6. Typical control loop structure for a multirotor UAS flight controller [2, 3].

subdividing the problem into a series of smaller control problems, usually consisting

of position control, attitude control, and finally motor control [38]. The position

controller sets the desired angular positions: θd desired pitch angle, φ desired roll

angle, and ψ desired yaw angle. The position controller also sets ∆ωh, the desired

rotation speed for all motors, which roughly corresponds to the desired net thrust.

The attitude controller sets the desired angular rates based on the angular position

setpoints mentioned above. These setpoints are ∆θ, ∆φ, and ∆ψ, which are angular

pitch rate, angular roll rate, and angular yaw rate respectively. The motor control

loop receives the desired angular rates and gross motor speed and calculates the

appropriate voltage for each motor to achieve the desired individual motor speeds.

The motor control loop receives feedback in the form of ωi which is the individual

motor speeds as reported by the electronic speed controllers attached to each motor.

Designers are able to decompose the multirotor control problem in this way by

applying successive loop closure. Successive loop closure allows designers to approxi-

mate the inner loops of Figure 6 as unity gain. This is based on the assumption that

inner loops operate at a much higher frequency than outer loops, approximately 5 to

10 times higher, so that the transfer function of the inner loop, as seen by the outer

loop is essentially flat [3]. The complex feedback structure collapses leaving only an

20

open loop transfer function consisting of a cascade of the transfer functions of the

three individual controllers.

Using this simplification, designers are able to construct three separate controllers

that are decoupled from one another. According to [3], the resulting plant models are

well controlled by simple proportional-integral-derivative (PID) controllers since they

only exhibit first or second-order behavior. Additionally, the overall transfer function

of these systems is adequately modeled by second order dynamics since inner loops

appear as unity gain to the outer loops. Therefore elementary Linear Time Invariant

(LTI) system analysis for second order systems is a useful approach for characterizing

flight controllers. For this research, the second order dynamics of interest are:

• Rise time - Time for the output to rise from 10% to 90% of the final output

value.

• Latency - time from the start of the input to 10% of the final output.

• Frequency Cutoff - the frequency where output magnitude is 3 dB below the

passband.

These measures were chosen because they capture the responsiveness of the con-

troller. Other second order dynamics, such as settling time, overshoot, and oscillatory

behavior were disregarded since they are largely determined by tuning of the flight

controller itself which was not the subject of this research.

2.2.2 PX4 and Ardupilot Firmware.

There are several capable flight controller firmwares which use some variation or

combination of PID controllers arranged in a nested loop structure. A comprehensive

survey of open-source flight controller projects is presented in [29]. PX4 and Ardupi-

lot are the only projects which are still being actively developed from this survey.

21

Interestingly, the two projects were jointly developed in a collaborative project until

breaking changes were made due to political reasons in 2016 [39]. It is difficult to

select one flight controller over the other on the basis of performance since they were

co-developed. Many of the underlying algorithms are very similar and no performance

comparison exists in the literature. In terms of behavioral-flexibility, PX4 benefits

from a highly modular code base facilitated by node modules communicating over the

µOrb publish and subscribe middleware. This is in contrast to Ardupilot firmware

which is hindered by a monolithic control loop structure[20, 19, 40]. For this reason,

PX4 was selected as the flight controller firmware of interest for this project and likely

constitutes the state-of-the-art for open-source flight controllers.

2.3 Robotic Software Frameworks

The development of robotic agents is a full spectrum engineering challenge span-

ning from low-level hardware and physical device concerns, such as sensors and ac-

tuators, to the high-level, almost philosophical, concerns of autonomy and artificial

intelligence. Robotic software frameworks (RSFs) were developed in an attempt to

bridge this chasm of engineering by providing the tools and infrastructure necessary

for robotic software. For this research, an RSF was needed to connect the sensors

to the UBF and the UBF to the controllers in a modular and extensible way. RSFs

also provided a number of important ancillary functions such as data logging, system

introspection tools, and development tools. The following subsections highlight the

features and capabilities of RSFs by surveying popular RSFs under active develop-

ment at the time of writing. This section concludes with a justification of the RSFs

chosen for the development platform.

22

2.3.1 Features of Robotic Software Frameworks.

Precisely defining the capabilities and features of RSFs as a whole is difficult since

individual frameworks are typically created with specific design principles in mind and

then tailored to a narrow set of applications and/or platforms. As a result of this

specialization, RSFs exhibit great diversity with regard to implementation, capabil-

ities, and design philosophy. Currently, there are over 22 well-known, open-source

frameworks available. Several authors [24, 41, 25, 26] have attempted to organize

and compare these RSFs using an objective basis of comparison. The foundational

paper [25] in the area of RSF comparison created a broad conceptual framework for

comparing RSFs along four dimensions: specification, platform support, infrastruc-

ture, and implementation. The authors then survey nine popular RSFs available in

2007. Due to the extremely high rate of turnover in the last decade, none of the orig-

inal RSFs analyzed are being actively developed, i.e. major updates being published

in the last year. Although it was not the first survey of RSFs [42, 43], the Kramer

framework represents one of the most cited and comprehensive in the literature by

identifying the major features and themes of RSFs.

The specification category concerns the design principles of an RSF with regard

to its incorporation of autonomy paradigms and software engineering. The specifi-

cation category is divided into three major subcategories: architectural primitives,

software engineering, and architecture neutrality. Architectural primitives regard the

low level “functional components and/or knowledge primitives” of the system. These

primitives form the language of the RSF and can strongly influence the types of

control and applicable to the system. In practice, Kramer, et al. [25] quantify an

RSF’s level of support by the number or form of robot control offered. RSFs with

one form of robot control, such as a finite state machine (FSM) or a behavior-based

architecture, to receive a somewhat supported rating, and RSFs with more than one

23

or complex forms of control receive a well-supported rating. Architectural neutrality

is also related to the ability of the RSF to accommodate various architectures. RSFs

may be strongly associated with a specific agent architecture or completely neutral,

leaving the choice up to the developer. Overall, the specification category attempts

to address the flexibility afforded by an RSF at design time.

Platform support addresses operating systems, sensors, and effectors supported by

an RSF. Platform support has the biggest impact on the ability of software written

in an RSF to be reused from one robot to another. The author also included sim-

ulation capability in this category. Simulators are, themselves, a kind of invaluable

platform allowing developers to test software quickly and with little risk. Finally,

the configuration method of the robot falls within platform support. This factor

rates the ease with which operational parameters can be modified within an RSF.

A difficult configuration method may require a developer to recompile code, while

an easy configuration method might allow a user to change parameters at runtime

through a GUI. The platform support category addresses aspects of RSFs that affect

the execution of robotic software.

Infrastructure encompasses the aspects of an RSF that support the execution of

software regardless of the specific architecture utilized or other system-wide design

considerations. Kramer et al. lists nine considerations for evaluating an RSFs infras-

tructure: low-level communication, logging facilities, debugging facilities, distribution

mechanisms, scalability, component mobility, system monitor/management, security,

and fault-tolerance. The purpose of many categories is self-evident so only a few of

the less obvious features will be expounded on here. Distribution mechanisms re-

fer to the ability of an RSFs, usually through networking middleware, to operate in

distributed systems such as a swarm. Component mobility describes the ability to

“relocate components at run-time”.

24

Finally, implementation pertains to characteristics of the actual implementation of

robotic software within an RSF, as well as the “predefined components” available to

a developer. Implementation characteristics of interests are: programming language

support, high-level robotics languages, documentation, real-time operation, graphical

interface, and software integration. In particular, the inclusion of documentation and

a graphical interface greatly enhance a developer’s ability to write and debug robotic

software.

Since 2007, many RSFs were developed. The following sections briefly describe a

selection of active, mature RSFs suitable for use in SUAS. Following this overview,

the Kramer conceptual framework is applied to each RSF based on information from

their respective documentation as well as survey papers which concern RSFs [24,

41, 25, 26]. The following analysis of the state-of-the-art RSFs using the Kramer

framework is intended to illustrate the essential elements of RSFs in general while

also evaluating the specific RSFs surveyed. A short description of the RSFs to be

analyzed is presented in Table 2.

OpenRTM-Aist.

The OpenRTM-Aist [44] framework is a component-based RSF developed at the

National Institute of Advanced Industrial Science and Technology (AIST) in Japan.

The fundamental component in the OpenRTM framework is the RT-component (Robot

Technology). The RT-component defines a common interface for sensor input, compo-

nent action, state, and output. This RSF somewhat supports architectural primitives

since the RT-components which make up the architecture include a built-in FSMs,

which is one form of robotic control. OpenRTM rates highly for its use of soft-

ware engineering principles because of the RT-component specification which adds a

high-level of modularity and potential for reuse amongst its components. It is imple-

25

Table 2. Summary of Robotic Software Frameworks Surveyed.

Description
OpenRTM Component based RSF supporting multiple languages and OS, de-

veloped by the National Institute of Advanced Industrial Science
and Technology in Japan

OROCOS Consisting of the Kinematics and Dynamics Library, Bayesian Fil-
tering Library and Orocos Toolchain, the OROCOS project is a
real-time focused RSF using “modular, run-time configurable soft-
ware components”.

ROS The Robot Operating System (ROS) is one of the most popular
RSFs today currently in its 11th release. ROS is designed to pro-
mote collaborative development of robots and enjoys an ecosystem
of over 3000 software components for robots written by various con-
tributors.

YARP Yet Another Robot Platform (YARP) was developed to promote
robotic software reuse by providing a rich communications infras-
tructure for decoupled robotic modules. In contrast with ROS,
YARP aims to decentralize control and does not strive to be an
operating system for robots.

PX4 The PX4 firmware is “a node-based multithreaded open source
robotics framework for deeply embedded platforms”. It can be
thought of as a real-time capable ROS equivalent, designed to oper-
ate as a distributed system with ROS for the control of autonomous
unmanned vehicles.

26

mented in an object-oriented language and makes use of high-level object languages

(CORBA). In terms of hardware support, OpenRTM is somewhat supported since

it includes roughly 31 different hardware components and a tutorial on creating an

RT-component for new hardware. This RSF is compatible with OpenRAVE, which

is a 4 year old high-fidelity, 3D robotics simulator. Since it doesn’t natively sup-

port some of the more modern and advanced simulators, it only earns a “somewhat

supported” mark. Logging, playback, and simple debugging are supported through

rtshell. OpenRTM has limited, built-in fault-tolerance since components can be

started and stopped without affecting a running system’s stability. While OpenRTM

is one of the older and less actively developed RSF’s surveyed, its component-based

approach is still highly influential today.

Orocos.

Orocos [45] is a general-purpose RSF focused strongly on control and real-time

performance in robotics applications. This project consists of three main compo-

nents: the Kinematics and Dynamics Library (KDL), the Bayesian Filtering Library

(BFL), and the Orocos Toolchain. The KDL helps developers model and compute

kinematic chains, the BFL provides a set of libraries for the dynamic estimation using

Kalman and particle filters, and the Orocos toolchain provides real-time components

for robotic applications. Orocos only natively supports FSMs as an autonomy prim-

itive, earning it a value of somewhat supported for architectural primitives. Orocos

is particularly well supported in terms of software engineering because it has ex-

plicitly stated its design philosophy, uses an object-oriented language, and utilizes a

high-level object language (CORBA). It is highly focused on real-time control, and

has chosen to outsource other RSF functionalities to other projects. The project

has a strong control based theoretical basis in kinematics, dynamics, and Bayesian

27

estimation. Due to the decision to outsource many RSF functionalities, RSF does

not support hardware devices or simulation environments. Furthermore, there is no

built-in fault tolerance for OROCOS components, although failure of one component

does not mean total failure.

ROS.

ROS [21] represents one of the most complete RSFs available today. ROS is de-

signed to be, as its name suggests, an operating system to simplify the development

of robotic software by providing a framework for collaborative development. This

framework is built upon a flexible communications middleware which supports mes-

sage passing between nodes using an asynchronous publish/subscribe design pattern,

remote procedure calls (RPC) implemented as services for synchronous messaging,

and preemptable RPCs called actions which monitor the progress of an action and

report the final result. This communications middleware enables data logging since

all messages flowing through the system can be captured. ROS supports multiple

architectural primitives such as FSMs, Actions (a ROS specific primitive), Markov

processes, and fuzzy decision making. ROS also includes a suite of development

tools including several dependency and package management tools, a custom build

tool called catkin, and several extensible introspection and visualization tools. Once

robotic software is written, developers can test and refine their code using one of

the many high-fidelity simulators which work with ROS. Perhaps the most valuable

feature of ROS is its library of over 3000 robotic software applications including

reusable algorithms and hardware interfaces. This library, known informally as the

ROS ecosystem, is a result of a thriving development community which not only con-

tributes packages to the ROS ecosystem but also works on the core components of

ROS releasing a major update to ROS yearly. Given the rich set of feature, active

28

development, and its rate of adoption, many RSF developers have chosen to inte-

grate with ROS to capitalize on ROSs success and bring their platforms to a wider

audience.

The RSF receives a somewhat supported value for software engineering because

it uses an object-oriented language and can be extended to use high-level object

languages like other languages. Its design philosophy is much less clear, however,

and does not have a strong theoretical basis in any one area due to its wide scope.

While ROS permits dynamic reconfiguration of a node network by shutting down

and restarting nodes, the system fails if the master node, which provides naming and

discovery services for the network, goes down. There is no explicit fault tolerance

in ROS. The communications middleware in ROS is socket based and relies upon

a modified versions of the TCP and UDP transport protocols. This, coupled with

ROS’s handling of memory management, makes real-time operation impossible in its

present form.

YARP.

Yet Another Robot Platform (YARP) [18] is an RSF built to prolong the useful life

of robotic software and promote interoperability between disparate robotic software

components. The YARP development team has authored numerous papers [18, 17, 16]

concerning the troublingly low rates of software reuse and high rates of “churn”

in the field of robotic software. YARP was designed to address this problem by

maximizing interoperability and reuse through its communications middleware and

decentralized model. Although YARP does not support many RSF features, YARP is

one of the most scalable and flexible RSFs surveyed due to its advanced distribution

mechanisms. YARP utilizes a number of carriers which seamlessly and transparently

connect applications in a YARP network through socket based technology, shared

29

memory, and various IPC mechanisms. Since YARP does not attempt to implement

many features common to RSF, it appears to score low in many categories. Although

this is technically true, the power of YARP lies with its ability to tie together existing

software and other RSFs to fill in the gaps it leaves.

PX4.

PX4 [20] is a node-based RSF targeted at unmanned vehicles and can be thought

of as a ROS equivalent for deeply embedded, real-time applications. The communica-

tions middleware, while much less feature rich, is similar to that of ROS with publish

and subscribe message passing facilitated by the µORB object request broker. PX4 is

also fully multithreaded which means that, since nodes communicate asynchronously

via message passing, applications can be decoupled. This greatly increases the modu-

larity and reuse of control software. PX4 is designed to run on NuttX, a POSIX-like,

real-time operating system, meaning that applications can be built to provide real-

time performance, a clear advantage over ROS which cannot provide such timing

guarantees due to the nature of its communication middleware. PX4 makes good use

of software engineering principles since its theoretical background and design philos-

ophy is well documented by its seminal paper. Additionally, it created its own object

request broker, makes good use of object-oriented design, and is scoped to permit

real-time operation.

Since PX4 is more focused than many RSFs, it lacks many common features

such as dynamic configuration of nodes. This is made up for by the fact that PX4

supports a direct interface to ROS running on a companion computer onboard the air-

craft. Currently, the two systems can communicate over MAVLink [46], a lightweight

communications protocol design for micro-air vehicles (MAVS). In the future, PX4

plans to support the Real-time Publish-Subscribe Wire Protocol [47]. In addition to

30

the direct interface, PX4 is capable of natively running nodes originally designed for

ROS with little modification. The intent of this deep integration is that nodes be

tested in ROS, to take advantage of the development and introspection tools of that

platform, and then easily transferred to PX4 for its real-time performance once the

code is adequately tested. The combination of PX4 and ROS provide a great solution

for autonomous UAS and are currently in use on the Dronecode Project, a Linux

Foundation collaborative effort to provide a complete UAS platform to include hard-

ware, ground control software, RSFs, and communications protocols. ROS and PX4

can be connected in a distributed system with ROS running computationally com-

plex processes, such as planning and monitoring high-level goals, and PX4 running

time-sensitive, safety-critical functions which require real-time performance.

31

T
a
b

le
3
.

C
o
m

p
a
ri

so
n

o
f

R
S

F
s

S
u

rv
e
y
e
d

U
si

n
g

th
e

K
ra

m
e
r

F
ra

m
e
w

o
rk

.

C
a
te

g
o
ry

C
ri

te
ri

a

OpenRTM

OROCOS

ROS

YARP

PX4

S
p

e
c
ifi

c
a
ti

o
n

F
1

F
1.

1
A

rc
h
it

ec
tu

ra
l

P
ri

m
it

iv
es

-
-

+
-

F
1.

2
S

of
tw

ar
e

E
n

gi
n

ee
ri

n
g

-
-

+
-

-
F

1.
2

A
rc

h
it

ec
tu

re
N

eu
tr

al
it

y
X

X
X

X
X

P
la

tf
o
rm

S
u

p
p

o
rt

F
2

F
2.

1
O

p
er

at
in

g
S

y
st

em
J
,U

,W
U

,W
U

U
,W

E
F

2.
2

H
ar

d
w

ar
e

S
u

p
p

or
t

-
+

-
F

2.
3

S
im

u
la

to
r

-
+

+
+

F
2.

4
C

on
fi

gu
ra

ti
on

M
et

h
o
d

R
T

R
T

R
T

R
T

R
u

n

In
fr

a
st

ru
c
tu

re
F

3

F
3.

1
L

ow
-l

ev
el

C
om

m
u

n
ic

at
io

n
O

O
S

,[
R

]
M

,S
O

,[
R

]
F

3.
2

L
og

gi
n

g
F

ac
il

it
ie

s
X

X
X

X
X

F
3.

3
D

eb
u

gg
in

g
F

ac
il

it
ie

s
X

X
X

X
X

F
3.

4
D

is
tr

ib
u

ti
on

M
ec

h
an

is
m

s
-

-
+

+
-

F
3.

5
S

ca
la

b
il

it
y

-
-

+
+

F
3.

6
M

on
it

or
in

g
M

an
ag

em
en

t
-

-
+

+
F

3.
7

S
ec

u
ri

ty
F

3.
8

F
au

lt
-t

ol
er

an
ce

X
X

X

Im
p

le
m

e
n
ta

ti
o
n

F
1

F
4.

1
P

ro
gr

am
m

in
g

L
an

gu
ag

e
C

+
+

,P
y,

J
C

+
+

C
+

+
,P

y
C

+
+

C
,C

+
+

F
4.

2
H

ig
h

-l
ev

el
L

an
gu

ag
e

X
X

F
4.

3
D

o
cu

m
en

ta
ti

on
-

-
+

+
-

F
4.

4
R

ea
l-

ti
m

e
O

p
er

at
io

n
X

X
F

4.
5

G
ra

p
h

ic
al

In
tr

os
p

ec
ti

on
X

F
4.

6
S

of
tw

ar
e

In
te

gr
at

io
n

X
X

X
X

X
F

4.
7

R
ob

ot
ic

A
lg

or
it

h
m

s
-

+
+

+

32

2.3.2 Summary.

Table 3 summarizes the analysis of the robotic software frameworks mentioned

above. In general, RSF technologies have improved since the initial survey conducted

by Kramer in 2007 [25]. Many of RSFs surveyed are interoperable with one another

and can leverage each others strengths. ROS is particularly interoperable amongst

this set since all of the other RSFs analyzed are, in some way, capable of augmenting

or complementing a ROS-based system. The desire to interoperate with ROS is due

in large part to its large community of developers, wide adoption, and rich feature set.

ROS was founded on the principle of distributed development and has consequently

fostered a thriving development community by providing the tools, such as package

management, documentation, and promotion necessary for its development. For this

reason, ROS constitutes the state-of-the-art RSF and the natural choice for inclusion

in a platform with behavioral-flexibility as a design goal.

33

III. Methodology

This chapter details the implementation of a behaviorally-flexible UAS develop-

ment platform and an experimental methodology to validate the design in order to

answer the research question. The chapter is divided into three sections. The first

section addresses IQ2 by describing the design of the platform starting with the ma-

jor hardware components and then the implementation of software components. The

second section describes an experiment, conducted in simulation, which analyzed the

effect of arbiter logic and organization on simulated agent performance on navigation-

based tasks. This experiment addressed IQ3 since arbiter logic is derived from a cor-

responding reactive robotic paradigm, allowing inferences about the effectiveness of

each paradigm to be drawn from agent performance. The final section concerns the

flight testing of the platform. Using a build-up approach, simple agents were flown

first to show that this system was safe, stable, and compliant with testing regulations

to answer IQ4. Using simulated data from the last experiment, a subset of stable

and competent agents were selected for flight testing. Flight tests with these agents

were used as the basis of a partial validation of the design. Agents were compared

with respect to controller performance as well as qualitative agent behavior in order

to answer IQ5.

3.1 Test Item Description

This section lays out the system under test, experimental apparatus, and support-

ing hardware. Justification is given for the chosen system elements. Figure 7 below

depicts the major hardware components of the X8 multirotor used during flight test-

ing of the platform.

34

Figure 7. The 3DR X8+ coaxial multirotor UAS. Major components and modifications
are annotated in red.

35

3.1.1 3DR X8+ Coaxial Octorotor.

The 3DR X8+ [48] is a multirotor type UAS with a 4 arm, 600 mm frame carrying

two vertically opposed, contra-rotating, 800 kV brushless motors on each arm. The

X8+ is is one of the most mature and numerous multirotor platforms in the Autonomy

and Navigation Technology (ANT) center inventory. The system was chosen for its

maturity, small size, and 15 minute flight time. The following paragraphs, numbered

according to Figure 7, highlight the configuration of the vehicle.

1. An Odroid XU4 system on a chip (SOC) computer, similar to Raspberry Pi [49]

or BeagleBone Black [50], was secured to the X8+ frame with industrial hook

and loop fasteners. The Odroid XU4 was chosen for its small size (83 x 58 x 20

mm), weight (90 g), support of 16.04 LTS Ubuntu Linux (required for ROS),

and powerful Cortex-A15 2 GHz and Cortex-A7 Octa core CPU [51]. A majority

of the required software was installed using convenience scripts developed by

PX4. The specific instructions and files are located at [40]. The same scripts

were used to configure the ground control station with the addition of installing

QGroundControl, the ground control software developed by PX4.

2. The flight controller used in this research was the Pixhawk [52], one of the most

widely used and mature autopilots available. The Pixhawk is powered by a

32-bit Cortex M4 FPU and fail-safe co-processor. The Pixhawk is integrated

with high-resolution 3-axis inertial measurement unit (IMU), barometer, GPS

receiver, and can support numerous other sensors. The Pixhawk flight controller

was chosen for its support of the PX4 firmware, availability, and in-house expe-

rience with the flight controller hardware.

3. 5 retroreflective markers were attached to the X8+ frame in an asymmetric

pattern. These markers are used in motion capture systems, discussed below,

36

to reflect infrared light back to cameras for pose estimation. The asymmetric

pattern is used to avoid ambiguous orientations, as seen by the motion capture

system, which might result in pose estimate errors.

3.1.2 Experimental Apparatus.

The flight testing facility used in this research consisted of a 30’ x 30’ x 20’ indoor

ViconTM motion capture chamber and supporting network infrastructure. The Vicon

motion capture system provided sub-millimeter, low-latency position estimates to the

PX4 flight controller [53]. Position estimates were first transmitted to the onboard

computer via WiFi and then to the PX4 over a serial connection. The ViconTM

estimates were input to the flight controller’s Local Position Estimator to estimate

the vehicle’s position. The indoor ViconTM motion capture chamber was a natural

choice for conducting flight tests due to its large size and precise position estimates.

3.1.3 Ground Control Station.

The ground control station (GCS) for this experimental setup consisted of a lap-

top running 16.04 LTS Ubuntu. The GCS served three primary purposes. First, the

GCS hosted QGroundControl, a flight control and mission planning program used to

monitor telemetry and configure vehicle parameters. Per regulation, all actively flying

UAS must maintain contact with an associated GCS. During setup, QGroundControl

initiated sensor calibration routines and wrote parameter changes to the flight con-

troller. During flight tests, QGroundControl collected and displays aircraft telemetry

which was used to monitor vehicle health and performance.

37

3.1.4 Communications links.

Networking the various computers required two additional devices which are de-

scribed here. The first was a WiFi connection to the onboard computer from the

ground control station to run scripts and to transmit motion capture position es-

timates as described above. A Netgear Wireless-N 300 Router acted as a wireless

access point to extend the existing wired network used to transport ViconTM, and an

Edimax N150 Wi-Fi Nano USB Adapter acted as the wireless network interface for

the Odroid XU4.

The second communication link consisted of a MAVLink stream over two different

physical networks. The first part of this network consisted of a pair of 3DR 915 MHz

wireless modems between the GCS and the Pixhawk. This link served as the primary

telemetry downlink to the GCS. The second MAVLink stream existed between the

Odroid XU4 and the Pixhawk over a serial connection. This link was used to exchange

commands and state information between the Pixhawk and the Odroid XU4 during

flight.

3.2 UBF Implementation in ROS

The UBF implementation in ROS grants exceptional flexibility in the configura-

tion of sensors, behavioral logic, and actuators, increasing the adaptability of the

platform. This section presents the implemented design using a top-down approach,

starting with its high level abstractions and moving toward the individual class imple-

mentations. First, a description of the network of ROS nodes comprising the system

provides context for the UBF agent node within the larger ROS system. Next, the

function of the concrete UBF classes composing an agent node are discussed. Since

the structure, function, and theory of the UBF base classes is thoroughly established

in [34], this section focuses on modifications and derivations from UBF base classes

38

specific to this implementation. The section closes with a list of implemented UBF

agents used during experimental flight test.

3.2.1 ROS System Description.

The ROS system description represents the highest level of software abstraction

for the behavior-flexible development platform. A ROS system is composed of many

nodes communicating over topics via messages. While additional overhead is in-

curred by this form of distributed computing, the node-based, publish and subscribe

middleware of ROS offers tremendous behavior-flexibility by way of adaptability. Ad-

ditionally, the logging and introspection tools utilizing publish and subscribe proved

to be an invaluable resource when creating, debugging, and testing this platform.

Overhead was minimized where practical by confining the majority of the behavioral

logic to a single node. Figure 8 presents the layout of the nodes in the ROS system

used in the research. Following is a short description of each node’s purpose.

1. ROS master - connects publishing nodes to subscribing nodes [54].

2. ROS parameter server - shared dictionary used by nodes in this system setup

to share configuration parameters at runtime. The parameter server can easily

be configured using one or more configuration files in the YAML markup lan-

guage. For example, a configuration file stored parameters in the server which

determined hovering altitude, maximum allowed speed, and home location for

testing [54].

3. rosbag - the primary means of data collection during simulation and flight

test. rosbag is a logging tool which reads and writes ROS messages to “bag”

files [54].

39

State
Composite

Behavior
Action

Horz MotorVert MotorYaw Motor

Controller Behavior

Library

UBF Agent

Node

MAVROS

vicon_bridge

Virtual Sensor

Param

Server
ROS

Master

1 2

rosbag

Serial to PX4

3
4

5

6

7

behavior

active behavior

action vector,

magnitude,

priority

ubf/Things

m
avros/state

m
avros/pose

pose

mavlink

ros msgs

mavros/setpoint

Figure 8. Diagram showing the organization of nodes within the ROS system.

40

4. vicon_bridge - publishes the position and orientation of a subject within a

ViconTMdata stream [54].

5. UBF Sensors - virtual sensors used to “sense” the obstacles and targets in

the navigation tasks described in this methodology. The UBF sensors package

contains four nodes which publish the names and positions of objects according

to the task under test.

6. UBF Agent Node - the main node of the system which contains the UBF im-

plementation. The Agent Node serves three main functions. First the UBF

node receives and processes sensor messages to build a state representation.

Second, the state representation is used by the behavioral and deliberative logic

to recommend actions and sequence behaviors. Finally, the winning actions are

published to the appropriate topics for execution.

7. MAVROS - a communication driver node for the PX4 flight controller which uses

the MAVLink protocol. MAVROS acts as an interface between a ROS net-

work and flight controller. MAVROS allows nodes in a ROS network to receive

telemetry and system status. A detailed description of the node and examples

of its usage can be found at [54].

3.2.2 UBF Agent Node.

The UBF agent node mentioned above was the primary software contribution of

this work. This node utilizes a number of classes which allow the UBF agent to receive

sensor input, generate actions from UBF behavior logic, and execute actions. The

following section describes implementation of UBF classes used in the agents under

test and details the next layer of abstraction in the design of the behavior-flexible

development platform.

41

3.2.3 The Controller Class.

The Controller class allows the agent to set active behaviors and communicate

with other nodes in the ROS system. A Controller is able to set the active behavior

and generate actions through a BehaviorLibrary object which is simply a container

for implemented behaviors. Actions generated by behaviors in a BehaviorLibrary

are converted to an equivalent message and published to MAVROS. The Controller

class can request to arm the flight controller and make mode transition through the

PX4Client. Although this functionality does not override physical safety mechanisms,

such as the arming button on Pixhawk flight controllers, caution should be exercised

when attempting to arm and transition modes through a Controller object.

3.2.4 The Behavior Class.

The Behavior class implements a standard interface to “capture the behavioral

logic of the controller as modules. . . ”[34]. This behavior logic is what allows agents

to act on sensor data to complete tasks. Behaviors come in two varieties: atomic

and composite. Atomic behaviors are the lowest level behaviors possible and pro-

duce action recommendations from the current state without relying on other be-

haviors. Composite behaviors, by contrast, combine one or more atomic behaviors

to produce an action recommendation. To arbitrate amongst the conflicting actions

recommended by its member atomic behaviors, a composite behavior has an Arbiter

object, discussed below, to determine a single resultant action based on some logic.

Eight concrete behaviors were created for experimental flight test. The intended

function of these behaviors is listed below.

42

Behavior

Avoid

CcwOrbit

CwOrbit

GotoPosition

GotoXY

Sprint

AltHold

Figure 9. Class hierarchy diagram depicting the implemented atomic behaviors used
by agents in this research. Atomic behaviors generate recommended actions based on
the current perception of the environment.

Atomic Behaviors.

• AltHold - recommends a velocity for the VertMotor, which controls vertical

motions, to maintain a desired altitude in the local coordinate frame. The

priority, given from 0 to 1, of the resulting action is based on how far the

current position is from the desired.

• Avoid - calculates a repulsive “force” vector in the horizontal plane from each

obstacle position known in the current state. A net force vector, formed from

the sum of individual force vectors, is used to recommend a velocity to the

HorzMotor, which controls motion in the XY plane. The priority of this behavior

is based on the distance to the closest object.

• Orbit - calculates a tangential “force“ vector in the horizontal plane from

the current target. This force vector specifies the velocity recommended to

HorzMotor. The Orbit behavior is implemented in a counter-clockwise and

clockwise variation. Action priority is based on distance to the target.

• GotoPosition - sets a position setpoint in the local coordinate frame for the

43

vehicle. Priority is proportional to the distance from the setpoint beyond a

specified threshold and zero otherwise.

• GotoXY - sets a velocity setpoint in the XY plane which points toward the

current target. Functionally GotoXY is very similar to GotoPosition, but the

logic it uses is quite different. In general, GotoXY should be used when speed is

the priority and GotoPosition should be used when positional accuracy is the

priority. Action priority is proportional to setpoint distance above a specified

threshold and zero otherwise.

• Sprint - like GotoXY, Sprint sets a velocity setpoint in the XY plane pointing to

some position in the local frame. However, Sprint does not scale the magnitude

of the velocity setpoint as a function of distance to the end point. The intent

of this node is to create a behavior that can “sprint” through the finish line of

a course to minimize time on course. Priority is proportional to distance to the

setpoint.

Composite Behaviors.

Composite PassOnLeft

PassOnRight

Navigate

Figure 10. Class hierarchy diagram depicting the implemented composite behaviors
used by agents in this research. Composite behaviors are made up of one or more
atomic behaviors.

44

• Navigate - This composite behavior combines the AltHold, GotoXY, and Avoid

behaviors according to Figure 14. The specific arbiter used to arbitrate actions

from GotoXY and Avoid can be set as desired during instantiation. The resulting

composite action produces a velocity based action which attempts to proceed

toward a target while avoiding obstacles.

• PassOnLeft and PassOnRight - These composite behaviors combine the AltHold,

GotoXY, Avoid, and Orbit behaviors according to Figure 15. The resulting com-

posite action produces a velocity based action which is designed to pass a target

on either the right or left and then enter an orbit. When combine with an ap-

propriate deliberator, these composite behaviors are used to run the clover leaf

pattern of a barrel race.

3.2.5 The Arbiter Class.

The purpose of the Arbiter class is to facilitate action arbitration according to the

reactive robotic paradigms discussed in Chapter 2. Arbiters allow multiple atomic be-

haviors to be combined into a single composite behavior which aides in the modularity

and organization of the development platform. Four derived Arbiter classes provide

these arbitration mechanisms: the SubsumptionArbiter, the PriorityArbiter, the

PriorityFusionArbiter, and the VectorSumArbiter. Figure 11 below depicts the

arbiters implemented for this work. The following paragraphs then describe the ar-

bitration logic of each derived class.

• SubsumptionArbiter - this class performs arbitration with respect to the order

Action objects are added to its action set. For the arbiter to work as intended,

behaviors must be added to the composite behavior from the lowest layer to

highest. This ordering of behaviors will populate the action set with lower

layer actions first. The SubsumptionArbiter class allows higher layers to sub-

45

Aribiter

PriorityFusion

Subsumption

Priority

VectorSum

Figure 11. Class hierarchy diagram depicting the implemented arbiters used by agents
in this research. Arbiters select or combine a set of actions to form one recommended
action according to the reactive robotic paradigm it represents.

sume lower layers by requiring that lower level actions meet a higher activation

threshold to vote than higher levels.

• PriorityArbiter - this class selects the Action object with the highest priority.

• PriorityFusionArbiter - this class selects the Action object with the highest

priority on a per motor basis. For instance, if Action A specifies a horizontal

position with priority 0.8 and Action B specifies a yaw angle with priority 0.5,

the resulting Action object will specify both yaw and horizontal position with

the highest component priority which is 0.8.

• VectorSumArbiter - this class sums the recommended actions of each Action

object weight by the priority of that action. For instance, if Action A specifies a

horizontal position of (1,0) with priority 0.5, and Action B specifies a horizontal

position of (0,1) with priority 1.0, the net horizontal position recommendation

would be (0.5,1.0). In the case of a yaw, there is not a obvious way to sensibly

fuse yaw recommendation. As such, yaw recommendations are arbitrated on a

highest priority basis.

46

To clarify the function of these arbiters, Figure 12 depicts an example set of actions

and the resulting action recommended for each arbiter above.

Action 1

 - Yaw(rad): 0.1

 - Vert(m): 5

 - Horz(m): 〈1,0〉
 - Priority: 0.6

Action 2

 - Yaw(rad): No Vote

 - Vert(m): 3

 - Horz(m): 〈0,1〉
 - Priority: 0.8

Priority Action

 - Yaw(rad): No Vote

 - Vert(m): 3

 - Horz(m): 〈0,1〉
 - Priority: 0.8

PriorityFusion Action

 - Yaw(rad): 0.1

 - Vert(m): 3

 - Horz(m): 〈0,1〉
 - Priority: 0.8

Subsumption Action

 - Yaw(rad): 0.1

 - Vert(m): 5

 - Horz(m): 〈1,0〉
 - Priority: 0.6

VectorSum Action

 - Yaw(rad): 0.1

 - Vert(m): 6.6

 - Horz(m): 〈0.6,0.8〉
 - Priority: 0.8

Figure 12. An example arbitration between Actions 1 and 2. The colors correspond
to which elements of the original actions (left) are preserved in the final recommend
action (right).

3.2.6 The Action Class.

Figure 13 depicts the constituent classes that make up the action class.

The Action class abstracts the services, movements, or actions offered by a vehicle

into a standard interface allowing Behavior objects to recommend actions with a

confidence level, or activation [34]. Action objects are passed up a behavior hierarchy,

like the ones shown in Figures 14 and 15, for arbitration by Arbiter objects and,

eventually, execution by a Controller object. To increase modularity, Action objects

for multirotor aircraft are composed of three Motor objects: YawMotor, HorzMotor,

and VertMotor, which control motion along a specified vehicle axis according to fields

in the PositionTarget message [54]. Motion can be specified in terms of position

relative to the local coordinate frame or velocity relative to the body frame of the

aircraft. When creating an Action object, behaviors will set the motors according to

47

Motor VertMotor

YawMotor

HorzMotor

Action

Figure 13. UML class diagram depicting the implementation of the action class. Actions
are composed of three motor objects which recommended a movement in a given plane
or axis.

the type of motion, i.e. position, velocity, or acceleration, and the magnitude of that

motion. Since the Action class is modular, extending it to incorporate new actuators

is accomplished by simply adding additional derived Motor classes. Furthermore,

since Motor objects encapsulate their own arbitration logic, one can add or subtract

motors according to the abilities of the vehicle without having to rewrite the Arbiter

classes.

3.2.7 The State Class.

The State class is responsible for receiving, aggregating, and serving processed

sensor data to behaviors and sequencing logic. To illustrate this process, imagine a

generic sensor that needs to be integrated into the ROS system for use in a UBF

agent. First an appropriate driver ROS node would need to be installed from the

ROS ecosystem or created. The driver node would interface with the sensor and

publish sensor data on a topic. A ROS Subscriber would be instantiated in the State

object to receive and process these messages. Once processed, the State object would

store relevant information to member variables which would then be available, inside

48

the ROS node, for other objects through public “getter” methods. This research

used three different types of sensors to populate the State object. The first was the

MAVROS node itself, which publishes many topics on the state of the UAS including

estimated position, velocity, battery status, and flight controller state. The second

was a Gazebo sensor which read model states from a Gazebo simulation to populate

target and obstacle information. Finally, virtual sensors, ROS nodes which publish

sensor data without interfacing with a real sensor, were used to create a standard

environment of obstacles and targets for simulation and flight test.

3.2.8 Implemented Agents.

As stated above, UBF agent nodes contain the behavioral logic and I/O function-

ality required for the development platform to complete tasks. For this series of tests,

five implementations of agent node were created in increasing complexity in order to

gain experience with the platform. These agents are listed below.

• offboard_example node - an example of offboard control from the PX4 devel-

opers guide which commands the multirotor to fly to a position and hold.

• circle_agent node - commands the multirotor to fly in a circular pattern.

Configuration parameters set the altitude, desired speed, and circle radius for

this agent.

• tf_agent node - executes a one meter step input followed by a linear frequency

sweep in both the horizontal and vertical plane. The combination of these

maneuvers was intended to assess controller performance and transfer function

characteristics.

• navigate_agent node - navigates to a target through an environment filled

with obstacles. Figure 14 depicts the behavioral hierarchy for this agent.

49

AltHold

Avoid GotoXY

Arbiter 1

Priority

Fusion

1

1 2

2

Figure 14. The Navigate behavioral hierarchy. Numbered arrows indicate the order in
which behaviors recommend actions to the arbiter which is relevant for the subsumption
arbiter. A generic arbiter is given in place of the specific arbiters used to differentiate
each agent.

50

• barrel_race_agent node - combines elements of the navigate_agent to fly a

barrel race course. This is the highest complexity agent since, to perform this

task, the agent must sequence behaviors correctly to fly a cloverleaf pattern and

arbitrate conflicting behaviors. Figure 15 depicts the behavioral hierarchy for

this agent.

AltHold

Orbit

Avoid

GotoXY

Arbiter 1

Arbiter 2

Priority

Fusion

1

1

1 2

2

2

Figure 15. The Pass behavioral hierarchy. Numbered arrows indicate the order in
which behaviors recommend actions to the arbiter which is relevant for the subsumption
arbiter. A generic arbiter is given in place of the specific arbiters used to differentiate
each agent.

3.2.9 Summary.

The platform described above successfully incorporates the UBF into a ROS sys-

tem capable of controlling a multirotor UAS. The behavioral logic is maintained inside

modular agent nodes which can easily be modified to accommodate new sensors, ac-

tuators, or behaviors. Although this implementation was designed and tested for

multi-rotor aircraft, it could seamlessly transfer to any of the many robotic systems

51

controlled by PX4 based controllers, such as fixed wing UAS, vertical takeoff and

landing craft, or rovers, thanks to the multiple layers of abstraction and modularity

inherent architecture.

3.3 Description of Navigation Tasks

A set of courses were designed to assess the robustness and adaptability of the

development platform. Three courses were used to test the performance of newly

developed agents. The first course consisted of four, one by one meter static obstacles

arrange in a box pattern. The agent must proceed through the course from a starting

point to a target point 12 meters away and back. The purpose of this course is to

assess the baseline performance of UBF agents in a navigation task. Figure 16 below

depicts the layout of this course.

52

0 2 4 6 8 10

X Position (m)

-6

-4

-2

0

2

4

6

Y
 P

o
s
it
io

n
 (

m
)

Start

Target

Figure 16. Layout of obstacles in the static obstacle navigation task.

The dynamic navigation course used the same static obstacles as the last course,

but introduced an obstacle which moved in a line through the center of the course at

one meter per second. The addition of this dynamic obstacle challenges the robustness

of agent function. Figure 17 below depicts the layout of this course.

53

0 2 4 6 8 10

X Position (m)

-6

-4

-2

0

2

4

6

Y
 P

o
s
it
io

n
 (

m
)

Start

Target

Dynamic

 Obstacle

Figure 17. Layout of obstacles in the dynamic obstacle navigation task.

The barrel racing task was based on the popular rodeo event in which competitors

ride in a cloverleaf pattern around barrels. Competitors are scored according to total

time on course and penalized for hitting barrels. This course was designed to address

two research interests. First, this task challenges the platform’s adaptability to new

tasks since it is appreciably different than the other tasks but relies on most of the

same behaviors and it requires the agents to switch the active behavior depending on

progress through the course. Second, this task tests the effectiveness of combinations

of arbiter logic by forcing agents to arbitrate amongst competing goals. To minimize

time on course, it is desirable to cut close to the barrels, minimizing distance, but

not so close as to cause a collision. Figure 18 below depicts the course and path for

54

the barrel race task.

0 2 4 6 8 10 12

X position (m)

-6

-4

-2

0

2

4

6

Y
 p

o
s
it
io

n
 (

m
)

Figure 18. Layout of obstacles in the barrel race course with example agent trajectory.

3.4 Experiment 1: Arbiter Logic and Organization Effect on Simulated

Agent Performance

The UBF offers tremendous flexibility in the design and organization of behavior-

based agents. Specifically, designers are free to implement and combine the behavior

logic, arbitration logic, and hierarchical organization in a way that is appropriate for

each task. A drawback of this flexibility is that the design space for creating and

tuning agents is massive, even for simple agents. For instance, The architectural

elements of Figure 14 and 15 could be rearranged and reimplemented in a countless

number of ways while still achieving their intended task. For simplicity, this research

sought to explore just one dimension of the design space: the arbiter logic. The

purpose of this experiment was two-fold:

1. Answer IQ3 by determining which reactive robotic paradigm, or combination

55

of paradigms, as expressed by arbiter type, produces the fittest agents for three

navigation-based tasks;

2. Answer the research question by validating the UBF implementation in ROS

to be a viable, behavior-flexible development platform for simulated multirotor

agents.

This section details the experimental design and methodology used to investigate

the effect of arbiter variation on simulated agent fitness in the three navigation based

tasks. Performance on these tasks served as a basis for comparison for agents of

varying arbiter type and arrangement because arbiter logic was the only experimental

factor manipulated between the agents tested.

3.4.1 Procedure.

First, the simulated test environment in Gazebo was initialized. The

roslaunch px4 posix_sitl.launch command [40], launches an emulated PX4 flight

controller and Gazebo simulation of a generic quadrotor UAS. The Odroid-XU4 off-

board computer, running MAVROS, was connected to the emulated flight controller

instance via UDP port 14557. A successful connection was indicated by the termi-

nal output of both the MAVROS process and the PX4 emulation process. Figure

19 depicts the connections of the software-in-the-loop (SITL) environment described

above.

The launch file corresponding to the agent under test was then launched. These

launch files ran the appropriate simulated sensor node associated with each task, a

rosbag logging node, the agent node, and loaded configuration parameters. If the

sim parameter is set to true, the agent will arm and transition to offboard control

automatically. The value of the sim parameter is safety critical since a real system,

if armed, will attempt to takeoff automatically with the agent node running.

56

Figure 19. Network diagram showing the connections of components in a “software-in-
the-loop” simulation environment [55].

Agent progress was monitored via the Gazebo GUI. A qualitative assessment of

agent performance was made with respect to the smoothness of its trajectory, clear-

ance given to obstacles, tendency to get stuck in local minima, etc. The qualitative

assessment was primarily used to determine if an agent would be suitable for flight

test. After the desired number of runs for the data collection was complete, the

agent node process was terminated. Without setpoints being sent, the PX4 firmware

returns automatically to the home position and lands.

After verifying the contents of the ROS bag file, this procedure was repeated with

a new agent for each agent in the data collection. Table 4 and 5 below depict the test

matrix for a replication of navigation and barrel race tests respectively.

3.4.2 Experimental Factors.

In the navigate_agent behavioral hierarchy, shown in Figure 14, one arbiter was

unspecified. The choice of that arbiter was the experimental factor for the navigation

57

tasks and could take on any one of the three implemented agents. Likewise, the

barrel_agent behavioral hierarchy left two arbiters unspecified. The choice of these

two arbiters constituted the experimental factors for the barrel race task. Tables 4

and 5 give a complete test matrix of the experimental factors for both tasks in the

experiment.

Table 4. Experimental factors for the navigation-based tasks.

Agent # Arbiter

S Subsumption

P Priority

VS Vector Sum

Table 5. Experimental factors for the barrel race task.

Agent # Upper Arbiter Lower Arbiter

S/S Subsumption Subsumption

S/P Subsumption Priority

S/V Subsumption Vector Sum

P/S Priority Subsumption

P/P Priority Priority

P/VS Priority Vector Sum

VS/S Vector Sum Subsumption

VS/P Vector Sum Priority

VS/VS Vector Sum Vector Sum

The agent coding number was determined by the type and position of arbiters

used. Note, that the PriorityFusion arbiter is functionally the same as a Priority

58

arbiter for both the navigate_agent and barrel_agent since both child behaviors

of the composite are voting on the same motors, and no fusion takes place. The

PriorityFusion arbiter was removed as an experimental factor for this reason.

3.4.3 Constant Factors.

The factors held constant in this experiment can be divided between factors in-

ternal to the agent (UBF factors) and factors external to the agent (environmental

factors). Table 9 and 10 present these factors, their anticipated effects, and methods

for control below.

59

Table 6. Factors internal to the UBF agent which are held constant during the ex-
periment. These factors are configuration parameters which could be changed to tune
performance without modifying the behavioral logic code itself.

Variable/Factor Anticipated Effects on Re-
sponse Variable

How Controlled

Course Geometry Course geometry will dramatically
affect all agent performance met-
rics

Standardized courses,
version controlled code

Behavior Order Behavior order affects which be-
haviors will subsume which with
a subsumption arbiter

Version controlled code

Repulsive Field Repulsive field topology and
strength affects the “force” push-
ing each agent which affects the
overall emergent behavior and
thereby agent performance

Version controlled YAML
configuration files

Attractive Field Attractive field topology and
strength affects the “force” pulling
each agent which affects the over-
all emergent behavior and thereby
agent performance

Version controlled YAML
configuration files

Tangential Field Tangential field topology and
strength affects the “force” tan-
gentially pushing each agent
which affects the overall emer-
gent behavior and thereby agent
performance

Version controlled YAML
configuration files

Behavior Priority
Logic

Behaviors determine their own
priority somewhat arbitrarily.
Priority determines which actions
are selected by arbiters which
affects overall emergent behavior.

Version controlled code

60

T
a
b

le
7
.

F
a
c
to

rs
e
x
te

rn
a
l

to
th

e
U

B
F

a
g
e
n
t

w
h

ic
h

w
e
re

h
e
ld

c
o
n

st
a
n
t

d
u

ri
n

g
th

e
e
x
p

e
ri

m
e
n
t.

V
a
ri

a
b
le

/
F
a
ct

o
r

D
e
si

ra
b
le

L
e
v
e
l

o
r

A
ll

o
w

a
b
le

R
a
n
g
e

P
re

ci
si

o
n

A
n
ti

ci
p
a
te

d
E

ff
e
ct

s
o
n

R
e
sp

o
n
se

V
a
ri

a
b

le
H

o
w

C
o
n
tr

o
ll
e
d

V
e
h
ic

le
M

a
ss

2.
6

k
g

1
g

C
h
an

ge
s

in
av

ai
la

b
le

ex
ce

ss
th

ru
st

d
u
e

to
m

as
s

ch
an

ge
co

u
ld

aff
ec

t
ag

en
t

p
er

fo
rm

an
ce

an
d

co
n
-

tr
ol

le
r

p
er

fo
rm

an
ce

/s
ta

b
il
it

y

S
ta

n
d
ar

d
iz

ed
S
et

u
p

P
ro

-
ce

d
u
re

V
e
h
ic

le
C

.G
.

N
.A

.
N

ot
M

ea
-

su
re

d
E

x
tr

a
th

ru
st

to
co

u
n
te

r
m

om
en

ts
co

u
ld

re
su

lt
in

p
o
or

p
er

fo
rm

an
ce

or
in

st
ab

il
it

y
S
ta

n
d
ar

d
iz

ed
S
et

u
p

P
ro

-
ce

d
u
re

B
a
tt

e
ry

V
o
lt

a
g
e

4.
2

v
-

3.
5

v
p

er
ce

ll
10

m
V

In
su

ffi
ci

en
t

re
m

ai
n
in

g
b
at

te
ry

en
er

gy
as

in
d
ic

at
ed

b
y

b
at

te
ry

vo
lt

ag
e

co
u
ld

re
su

lt
in

d
eg

ra
d
ed

th
ru

st
or

te
st

te
rm

in
at

io
n
.

M
on

it
or

in
g

an
d

ch
an

g-
in

g
b
at

te
ri

es
w

h
en

lo
w

In
it

ia
l

C
lo

ck
O

ff
se

t
b

e
tw

e
e
n

G
C

S
a
n
d

O
n
b

o
a
rd

C
o
m

p
u
te

r

<
20

0
m

s
te

n
s

of
m

il
-

li
se

co
n
d
s

T
h
e

ti
m

e-
st

am
p
s

of
m

ot
io

n
ca

p
tu

re
d
at

a,
U

B
F

se
tp

oi
n
ts

,
an

d
P

X
4

p
os

it
io

n
es

ti
m

at
es

m
ay

n
ot

al
ig

n
.

T
h
is

is
k
n
ow

n
to

ca
u
se

in
st

ab
il
it

y
in

P
X

4
co

n
tr

ol
le

rs
fu

si
n
g

m
ot

io
n

ca
p
tu

re
d
at

a
an

d
in

tr
o-

d
u
ce

s
a

co
n
fo

u
n
d
in

g
va

ri
ab

le
fo

r
re

sp
on

se
va

ri
-

ab
le

s
re

ly
in

g
on

ti
m

e-
st

am
p

d
at

a.

N
et

w
or

k
T

im
e

P
ro

to
co

l
(N

T
P

)

C
lo

ck
D

ri
ft

<
20

0
m

s
N

ot
m

ea
-

su
re

d
ti

m
in

g
ac

cu
ra

cy
aff

ec
ts

th
e

ab
il
it

y
of

th
e

P
X

4
fl
ig

h
t

co
n
tr

ol
le

r
to

fu
se

m
ot

io
n

ca
p
tu

re
es

ti
m

at
es

w
h
ic

h
in

tu
rn

aff
ec

ts
th

e
st

ab
il
it

y
of

th
e

U
A

S
.

N
T

P
,

A
ss

u
m

ed
to

b
e

sm
al

l

N
e
tw

o
rk

L
a
te

n
cy

b
e
-

tw
e
e
n

V
IC

O
N

,
G

C
S
,

a
n
d

O
n
b

o
a
rd

C
o
m

-
p
u
te

r

<
20

0
m

s
1

m
s

N
et

w
or

k
la

te
n
cy

w
il
l

ad
ve

rs
el

y
im

p
ac

t
P

X
4

p
os

i-
ti

on
es

ti
m

at
es

in
th

e
sa

m
e

w
ay

as
cl

o
ck

off
se

ts
.

A
ss

u
m

ed
to

b
e

sm
al

l,
li
m

it
tr

affi
c

to
m

is
si

on
cr

it
ic

al
se

rv
ic

es
,

u
se

et
h
-

er
n
et

w
h
en

p
ra

ct
ic

al
V

IC
O

N
p

o
si

ti
o
n

a
c-

cu
ra

cy
10

cm
R

M
S
E

N
ot

m
ea

-
su

re
d

M
ot

io
n

ca
p
tu

re
d
at

a
w

il
l

aff
ec

t
co

n
tr

ol
le

r
st

ab
il
-

it
y,

b
eh

av
io

r
lo

gi
c,

an
d

d
at

a
re

ly
in

g
on

p
os

it
io

n
es

ti
m

at
es

.

A
ss

u
m

ed
to

b
e

sm
al

l
(∼

1
m

m
)

A
tm

o
sp

h
e
ri

c
C

o
n
d
i-

ti
o
n
s

V
ar

io
u
s

N
ot

M
ea

-
su

re
d

A
ir

d
en

si
ty

an
d

te
m

p
er

at
u
re

w
il
l

aff
ec

t
th

e
ex

-
ce

ss
th

ru
st

av
ai

la
b
le

to
th

e
o
ct

or
ot

or
w

h
ic

h
aff

ec
ts

ag
en

t
p

er
fo

rm
an

ce
an

d
st

ab
il
it

y

In
d
o
or

te
st

en
v
ir

on
m

en
t

61

3.4.4 Response Variables.

Table 8 shows the response variables for this experiment.

Table 8. Response variables measured in the arbiter variation experiment (IQ3).

Response Variable Precision Relationship to Objective
Course Time 33 ms Agent performance
Duration of Obstacle
Collisions

∼1 mm (spacial) x 33 ms
(temporal) resolution

Agent performance

The primary response variables of interest in these tasks were course time and

collision duration. These metrics captured the competing interests inherent to the

given navigation tasks since the safest route may not be the fastest and vice-versa.

Time on task was calculated from the time-stamp of the first action recommendation

until the last time-stamp of the last behavior. Actions intended to ready the agent

for the next run were not included in this calculation.

Collision duration was calculated as the elapsed time within the boundaries of each

obstacle. Thus, behaviors which quickly corrected from a collision were penalized less

than those which were slower to respond.

3.4.5 Nuisance Factors.

Relatively few nuisance factors were anticipated for simulated agents. A possible

nuisance factor was variability of the state of the simulating computer during a repli-

cation of runs. For instance, fluctuations in processor speed or memory utilization

on the host computer will degrade fidelity of the simulation environment and could

affect the performance of agents in unexpected ways. Multiple replications of the

experiment were run to average out variability in simulation quality.

Another potential confounding variable was network latency between the Odroid-

XU4 and simulation computer. Latency could significantly impact the performance

of agents if timely updates to agent state and action setpoints are not being made.

62

Since both devices were connected by a wired Ethernet connection, network latency

was assumed to be small and fairly constant. Blocking was used to ensure that the

network was in a similar state for all agents during a replication.

3.4.6 Known/Suspected Interactions.

The nature of emergent behavior is such that complex interactions between lower

level behaviors, priority weights, arbiter choice, and structure are expected and are de-

sirable to produce complex behavior necessary for behavior-based agents to function.

These interactions are often unpredictable and, due to the large design space, require

metaheuristic optimization techniques to find parameters which produce an effective

agent. In this experiment, the number of factors was intentionally reduced to allow

for a full factorial experimental design to be conducted. Trends in high-performance

agents may elucidate the interactions between arbiter logic and organization in this

context.

3.4.7 Assumptions.

The following assumptions were made for this experiment:

1. During a data collection, the state of the simulating computer was relatively

constant

2. During a data collection, the state of the network connecting the simulating

computer and offboard flight controller was relatively constant

3. The bias and drift of the clocks in the test are sufficiently small to be ignored

4. The starting state of the UAS is consistent between runs

63

3.5 Experiment 2: Flight Test Validation of the Behavior-Flexible UAS

Development Platform

The ability to predict the behavior of physical agents based on their simulated

behavior is a crucial feature of UAS development platforms. Systems that rely on

emergence are inherently unpredictable. Testing physical agents without being able to

vet them in the safety of a simulated environment significantly increases operational

risk. Similarly, reactive agents typically require tuning, often by trial and error, before

they are proficient at their assigned tasks. If simulated agent behavior accurately

reflects physical agent behavior, the need for real-world tuning is reduced which can

significantly lower development time, cost, and risk. To assess the degree to which

agent performance can be generalized in the UBF/ROS implementation, the following

investigation compared and contrasted several metrics of simulated agent performance

with that of real-world agents. The objectives of this investigation were as follows:

1. Answer IQ 4 by performing flight tests to validate that the platform is safe,

stable, and compliant with testing regulations.

2. Answer IQ 5 by determining the degree to which simulated agent performance

generalizes and predicts actual performance

3. Answer IQ 5 by comparing controller performance between simulated and real-

ized systems

4. Answer the research question by validating the UBF implementation in ROS as

a viable, behavior-flexible development platform for physical multirotor agents

through a flight test demonstration

This section details the experimental design and methodology used to compare

the performance of UBF agents and their flight controllers during simulated and phys-

64

ical task execution. This investigation utilized the three most competent, smooth,

and predictable agents identified in the last experiment. To characterize the flight

controllers, three additional agents were also flown.

3.5.1 Procedure.

The setup required for flight testing was considerably more involved due to the

addition of the multirotor hardware and the external motion capture system. The

following paragraphs describe this procedure in detail.

First, the ViconTMsystem, GCS, wireless access point, and Odroid were connected

to the same local area network. Static IP addresses were assigned to each device

which added consistency to the setup procedure. The Vicon system was initialized

by powering the camera servers and starting the Tracker software. Next, the Odroid

and Pixhawk were powered on and placed in the center of the test chamber.

Next, the ROS system was initialized. A Secure Shell (SSH) connection was

initiated to the Odroid to start a ROS Master node via the roscore command. The

vicon_bridge node was then started on the ground control station. Since the ROS

Master node was hosted on the Odroid, the ROS_MASTER_URI environmental variable

on the GCS was set to the IP address of the Odroid.

Third, to ensure that the position messages generated by vicon_bridge were be-

ing published, a rostopic echo command was used to listen to the ~/mocap/tf topic.

MAVROS was started over a new SSH terminal on the Odroid with a 962100 baud, se-

rial connection to the FCU. The MAVROS ~/mocap/tf and ~/local_position/pose

topics were compared while carrying the vehicle around the test chamber to verify

that the flight controller was fusing the motion capture estimates properly. Successful

fusion was indicated by a match between the position estimates published on these

topics to within a few millimeters. If estimates are received but do not match it is

65

likely that the Odroid clock does not match that of the GCS. The program rdate

can be used to force the Odroid to synchronize its clock with the GCS.

Finally, individual agents were tested. The safety pilot initiated a manual takeoff

to around 2 meters and transitioned the vehicle to altitude hold mode. If the vehicle

was stable in altitude hold mode the launch file for the agent under test was executed.

Note that these were the same launch files used in the previous experiment with the

sim parameter set to false to disallow automatic takeoffs. The safety pilot initiated

offboard mode, via an assigned RC switch, once the agent began publishing setpoints.

Agent progress on each task was video recorded and telemetry data was collected via

rosbag.

After verifying the contents of the ROS bag file, this procedure was repeated

for each agent. The following agents were simulated and flight tested during this

experiment.

• offboard_example

• circle_agent

• tf_agent

• Agent VS - Static obstacle course

• Agent VS - Dynamic obstacle course

• Agent VS/VS - Barrel course

• Agent VS/P - Barrel course

After flight testing, simulated tests were carried out to compare to the flight

test results. Due to limitations of the flight testing environment two modifications

were made to the standard navigation and barrel race tasks. First, course sizes were

66

reduced to allow for adequate clearance from the flight test chamber walls. Second,

maximum agent speed was reduced from 5.0 m/s to 0.5 m/s to allow the safety pilot

time to recover the UAS in the event of anomalous behavior. The new simulations

reflected these modifications to provide an unbiased comparison.

3.5.2 Experimental Factors.

For this experiment, seven agents were tested in simulation and during flight test.

Per the build-up approach, the simplest agents were flown first. The first agent was

the offboard_example agent which commanded the multirotor to go to a specific

position two meters above the chamber floor and hover. The second agent was the

circle_agent which commanded the multirotor to fly in a large circle at 1 m/s

to test the path tracking ability of the flight controller. The third agent was the

tf_agent which commanded step functions and frequency sweeps to characterize the

flight controller. The fourth agent was the navigate_agent with a vector summation

arbiter. This agent ran the static and dynamic navigation courses. The sixth agent

was barrel_agent with vector summation arbiters which ran the barrel race course.

Finally, the seventh agent was the barrel_agent with subsumption and priority

arbiters which also ran the barrel race course. These agents were selected as good

candidates for flight test based on the smoothness of their trajectories and their fitness

determined in the previous experiment.

3.5.3 Constant Factors.

The factors held constant in this experiment can be divided between factors in-

ternal to the agent (UBF factors) and factors external to the agent (environmental

factors). Table 9 and 10 present these factors, their anticipated effects, and methods

for control below.

67

Table 9. Factors internal to the UBF agent which are held constant during the ex-
periment. These factors are configuration parameters which could be changed to tune
performance without modifying the behavioral logic code itself.

Variable/Factor Anticipated Effects on Re-
sponse Variable

How Controlled

Course Geometry Course geometry will dramatically
affect all agent performance met-
rics

Standardized courses,
version controlled code

Behavior Order Behavior order affects which be-
haviors will subsume which with
a subsumption arbiter

Version controlled code

Repulsive Field Repulsive field topology and
strength affects the “force” push-
ing each agent which affects the
overall emergent behavior and
thereby agent performance

Version controlled YAML
configuration files

Attractive Field Attractive field topology and
strength affects the “force” pulling
each agent which affects the over-
all emergent behavior and thereby
agent performance

Version controlled YAML
configuration files

Tangential Field Tangential field topology and
strength affects the “force” tan-
gentially pushing each agent
which affects the overall emer-
gent behavior and thereby agent
performance

Version controlled YAML
configuration files

Behavior Priority
Logic

Behaviors determine their own
priority somewhat arbitrarily.
Priority determines which actions
are selected by arbiters which
affects overall emergent behavior.

Version controlled code

68

T
a
b

le
1
0
.

F
a
c
to

rs
e
x
te

rn
a
l

to
th

e
U

B
F

a
g
e
n
t

w
h

ic
h

w
e
re

h
e
ld

c
o
n

st
a
n
t

d
u

ri
n

g
th

e
e
x
p

e
ri

m
e
n
t.

V
a
ri

a
b
le

/
F
a
ct

o
r

D
e
si

ra
b
le

L
e
v
e
l

o
r

A
ll

o
w

a
b
le

R
a
n
g
e

P
re

ci
si

o
n

A
n
ti

ci
p
a
te

d
E

ff
e
ct

s
o
n

R
e
sp

o
n
se

V
a
ri

a
b

le
H

o
w

C
o
n
tr

o
ll
e
d

V
e
h
ic

le
M

a
ss

2.
6

k
g

1
g

C
h
an

ge
s

in
av

ai
la

b
le

ex
ce

ss
th

ru
st

d
u
e

to
m

as
s

ch
an

ge
co

u
ld

aff
ec

t
ag

en
t

p
er

fo
rm

an
ce

an
d

co
n
-

tr
ol

le
r

p
er

fo
rm

an
ce

/s
ta

b
il
it

y

S
ta

n
d
ar

d
iz

ed
S
et

u
p

P
ro

-
ce

d
u
re

V
e
h
ic

le
C

.G
.

N
.A

.
N

ot
M

ea
-

su
re

d
E

x
tr

a
th

ru
st

to
co

u
n
te

r
m

om
en

ts
co

u
ld

re
su

lt
in

p
o
or

p
er

fo
rm

an
ce

or
in

st
ab

il
it

y
S
ta

n
d
ar

d
iz

ed
S
et

u
p

P
ro

-
ce

d
u
re

B
a
tt

e
ry

V
o
lt

a
g
e

4.
2

v
-

3.
5

v
p

er
ce

ll
10

m
V

In
su

ffi
ci

en
t

re
m

ai
n
in

g
b
at

te
ry

en
er

gy
as

in
d
ic

at
ed

b
y

b
at

te
ry

vo
lt

ag
e

co
u
ld

re
su

lt
in

d
eg

ra
d
ed

th
ru

st
or

te
st

te
rm

in
at

io
n
.

M
on

it
or

in
g

an
d

ch
an

g-
in

g
b
at

te
ri

es
w

h
en

lo
w

In
it

ia
l

C
lo

ck
O

ff
se

t
b

e
tw

e
e
n

G
C

S
a
n
d

O
n
b

o
a
rd

C
o
m

p
u
te

r

<
20

0
m

s
te

n
s

of
m

il
-

li
se

co
n
d
s

T
h
e

ti
m

e-
st

am
p
s

of
m

ot
io

n
ca

p
tu

re
d
at

a,
U

B
F

se
tp

oi
n
ts

,
an

d
P

X
4

p
os

it
io

n
es

ti
m

at
es

m
ay

n
ot

al
ig

n
.

T
h
is

is
k
n
ow

n
to

ca
u
se

in
st

ab
il
it

y
in

P
X

4
co

n
tr

ol
le

rs
fu

si
n
g

m
ot

io
n

ca
p
tu

re
d
at

a
an

d
in

tr
o-

d
u
ce

s
a

co
n
fo

u
n
d
in

g
va

ri
ab

le
fo

r
re

sp
on

se
va

ri
-

ab
le

s
re

ly
in

g
on

ti
m

e-
st

am
p

d
at

a.

N
et

w
or

k
T

im
e

P
ro

to
co

l
(N

T
P

)

C
lo

ck
D

ri
ft

<
20

0
m

s
N

ot
m

ea
-

su
re

d
ti

m
in

g
ac

cu
ra

cy
aff

ec
ts

th
e

ab
il
it

y
of

th
e

P
X

4
fl
ig

h
t

co
n
tr

ol
le

r
to

fu
se

m
ot

io
n

ca
p
tu

re
es

ti
m

at
es

w
h
ic

h
in

tu
rn

aff
ec

ts
th

e
st

ab
il
it

y
of

th
e

U
A

S
.

N
T

P
,

A
ss

u
m

ed
to

b
e

sm
al

l

N
e
tw

o
rk

L
a
te

n
cy

b
e
-

tw
e
e
n

V
IC

O
N

,
G

C
S
,

a
n
d

O
n
b

o
a
rd

C
o
m

-
p
u
te

r

<
20

0
m

s
1

m
s

N
et

w
or

k
la

te
n
cy

w
il
l

ad
ve

rs
el

y
im

p
ac

t
P

X
4

p
os

i-
ti

on
es

ti
m

at
es

in
th

e
sa

m
e

w
ay

as
cl

o
ck

off
se

ts
.

A
ss

u
m

ed
to

b
e

sm
al

l,
li
m

it
tr

affi
c

to
m

is
si

on
cr

it
ic

al
se

rv
ic

es
,

u
se

et
h
-

er
n
et

w
h
en

p
ra

ct
ic

al
V

IC
O

N
p

o
si

ti
o
n

a
c-

cu
ra

cy
10

cm
R

M
S
E

N
ot

m
ea

-
su

re
d

M
ot

io
n

ca
p
tu

re
d
at

a
w

il
l

aff
ec

t
co

n
tr

ol
le

r
st

ab
il
-

it
y,

b
eh

av
io

r
lo

gi
c,

an
d

d
at

a
re

ly
in

g
on

p
os

it
io

n
es

ti
m

at
es

.

A
ss

u
m

ed
to

b
e

sm
al

l
(∼

1
m

m
)

A
tm

o
sp

h
e
ri

c
C

o
n
d
i-

ti
o
n
s

V
ar

io
u
s

N
ot

M
ea

-
su

re
d

A
ir

d
en

si
ty

an
d

te
m

p
er

at
u
re

w
il
l

aff
ec

t
th

e
ex

-
ce

ss
th

ru
st

av
ai

la
b
le

to
th

e
o
ct

or
ot

or
w

h
ic

h
aff

ec
ts

ag
en

t
p

er
fo

rm
an

ce
an

d
st

ab
il
it

y

In
d
o
or

te
st

en
v
ir

on
m

en
t

69

3.5.4 Response Variables.

Regulatory compliance was determined by the system’s ability to meet four safety

critical requirements. The first requirement is that the safety pilot be able to safely

transfer control to the UBF agent when desired and transfer control from the UBF

agent at any time. Second, the system must be able to achieve, maintain, and safely

terminate flight. Finally, the system must maintain connectivity with a ground control

station. Table 11 summarizes these requirements.

Table 11. Requirements used to determine system safety, stability, and compliance
with testing regulations (IQ4).

Requirement Pass/Fail
Transfer of Control
Achieve Flight
Maintain Flight
End Flight
GCS Connection

Agent and controller performance was assessed according to a diverse set of met-

rics. Table 12 shows the response variables for agent comparisons.

Table 12. Comparison metrics used to determine the similarity of the simulated and
real agent behavior (IQ5).

Comparison Metrics Precision Relationship to Objective
Rise Time 33 ms Compare responsiveness (IQ5)
Latency 33 ms Compare responsiveness (IQ5)
Cutoff Frequency 1 Hz Compare controller performance (IQ5)
Obstacle Collision
Duration

1 mm (spacial) x
33 ms (temporal)
resolution

Compare agent performance (IQ5)

Agent Course Time 33 ms Compare agent performance (IQ5)

These metrics were selected in an attempt to account for observed differences in

agent behavior and performance between simulation and physical flight testing. No

direct, quantitative comparison between the simulated and real agent trajectories

was attempted for this experiment. [56] presents method for quantitative comparison

70

of robot trajectories, but this technique was not utilized due to its complexity and

time limitations. Mean course time and mean collision duration are used instead to

quantitatively compare agent behavior. Additionally, since perception and behavioral

logic was held constant between runs, variance due to the system itself was likely the

result of different hardware and flight controller tuning. An analysis of the platform

as a linear system was intended to quantify these differences.

3.5.5 Nuisance Factors.

Field testing with hardware introduces a wide variety of confounding variables

when compared to simulation alone. First and foremost, the simulation operates on

an idealized model of multirotor dynamics as discussed in Chapter 2. Certain aspects

of the real-world dynamics are not present in simulation and will affect the system

response as measured by the transfer function metrics given above. Another possi-

ble nuisance factor was the initial configuration of the multirotor. Battery voltage,

changes to the center of gravity, and initial location all affected the performance of

the SUAS. To control for these effects, batteries were changed frequently between

runs and located by hook and loop fastener to provide a consistent center of gravity.

Many environmental factors were minimized since testing took place indoors. There

should be little variability in the location of the target, static, and dynamic threats

since they were purely virtual precepts to the agent and positioning information was

very precise.

3.5.6 Assumptions.

The following assumptions are made for this experiment:

1. Since the vehicles operated within a benign region of their flight envelopes, i.e.

low speed and gentle maneuvers, differences in aircraft performance capabilities

71

did not contribute to observed performance differences.

2. Controller tuning was not a large contribution of observed differences since

standard tuning procedures were employed and kept constant across runs.

3. The performance of the emulated autopilot was sufficiently analogous to the

performance of a real autopilot such that no agent configuration was favored

over another.

4. VICON positioning data were sufficiently accurate for the agents to navigate

the scenario correctly.

5. All hardware and firmware function correctly during the test.

3.5.7 Limitations.

As is often the case with flight testing, there were several limiting factors which

constrained the scope and depth of this experimental design. Safety and test chamber

size were some of the largest limiting factors. At the request of the safety pilot,

the maximum operating speed was lowered from 5.0 m/s, as was used in the first

experiment, to 0.5 m/s. Additionally, the geometry of tasks had to be compressed to

provide an adequate buffer from the chamber walls. These limitations were largely

overcome by modifying the simulated tasks to reflect these modifications. Safety

also dictated that certain agents would not be suitable for flight test. Priority and

subsumption based agents in particular were disallowed due to their “jerky” flight

patterns.

Time also constrained the experiment. A full factorial experimental design re-

quired only three agents per repetition for the navigation tasks and nine agents per

repetition for the barrel race task. These 15 agents were each allowed five runs per

72

data collection which necessitated 75 runs per replication of the experiment. Al-

though the 75 runs is manageable for simulation, flight testing of all agents was

deemed infeasible due to battery capacity limitations, operational safety, availability

of test personnel, and chamber size. This limitation was overcome by selecting the

safest and highest performing agents for flight test and limiting the number of runs

for each.

3.5.8 Summary.

The results of a comparison of simulated and physical agents offer significant

insight into the practicality of the platform as a whole. At all stages of development

it is important to test agent performance for safety, competence, and correct function

in simulation before risking hardware and time in flight tests. As mentioned above,

predictability of physical agents relies heavily to some degree how well simulated

performance translates into actual performance. Additionally, these result might offer

insights into the generalizability of the UBF to other physical systems since the vehicle

flown in the experiment, an octorotor, is a relatively different from the simulated

hardware, a quadrotor. Finally, and importantly, this experiment demonstrates that

platforms well for physical agents.

73

IV. Results

The following chapter discusses the results and significant findings of this re-

search. Two experiments were conducted in order to answer the research question,

“Is it possible to develop a behavior-flexible development platform for autonomous

UAS agents using open-source software components?” The first experiment assessed

the performance of a set of UBF agents on three navigation-based tasks in a simu-

lated environment. This experiment was designed to identify which reactive robotic

paradigms, as represented by the different arbiter types, performed best for naviga-

tion tasks. The second experiment consisted of a flight test program of seven UBF

agents on various tasks. This experiment sought to establish the regulatory compli-

ance of the platform and compare simulated results with flight test results to gauge

the predictability of the platform.

For this analysis run times were assumed to be approximately normally dis-

tributed. This assumption was validated with a chi-squared goodness-of-fit test which

determined that a quarter of run times were normally distributed to a confidence of

95% and half of all run times were normally distributed to a confidence of 90%. Runs

which did not appear to be normal were typically bimodal, with each cluster being

approximately normal.

The remainder of the chapter is presented in two parts. First, the arbiter logic and

organization effect on simulated agent performance is presented. The results of each

individual task are given first, followed by a discussion of significant findings, trends,

and other analysis. Second, the flight test validation of the platform is recounted

starting with the simplest agents and building to the most complex. This section also

concludes with a discussion of significant findings, trends, and analysis.

74

4.1 Experiment 1: Arbiter Logic and Organization Effect on Simulated

Agent Performance

The following sections present the results of the first experiment of this research.

This experiment assessed the performance of simulated UBF agents on three navi-

gation based tasks to determine which combination of arbiter logic and organization

completed tasks in the least time and shortest total duration of obstacle collisions.

Since an arbiter’s logic is derived from its corresponding reactive robotic paradigm,

this experiment offers insight into the effectiveness of each paradigm for UAS agents

on navigation tasks.

4.1.1 Static obstacle navigation results.

The static obstacle navigation task consisted of navigating from a starting point

to a target point and back while avoiding static obstacles. Figure 20 depicts the mean

obstacle collision duration per run for each agent. Collision duration was measured

by the number of position estimates (captured every 33 ms) within one by one meter

square around each obstacle.

75

Agent P Agent S Agent VS
0

50

100

150

200

250

300

350

400

450

500

M
e
a
n
 C

o
lli

s
io

n
 D

u
ra

ti
o
n
 (

m
s
)

Figure 20. Bar chart depicting mean collision duration per run of the static obstacle

navigation task for each agent.

Agent time on task was calculated by taking the difference of the starting setpoint,

as indicated by a flight controller mode change, to the final setpoint, also indicated

by a mode change. The mode transition for the starting setpoint was triggered by

being within a radial distance of 0.5 meters of the start location with a maximum

speed of 0.2 m/s for a consistent starting state between runs. The final setpoint mode

transition was triggered when the UAS was within 0.5 meter of the start location with

any speed. Figure 21 presents the average agent time on task per run.

76

Agent P Agent S Agent VS
10

12

14

16

18

20

22

24

26

28

30

M
e
a
n
 C

o
u
rs

e
 T

im
e

(s

)

Figure 21. A bar chart depicting mean time to complete the static obstacle navigation

task for each agent.

Tables 13 and 14 present a statistical analysis of agent mean time on task and

collision duration respectively for the static obstacle navigation task.

Table 13. Statistical summary of mean completion time on the static obstacle task.

Agent Trials Mean (s) CI 95% Std. Dev.

S 114 21.34 [20.54, 22.13] 4.28

P 122 15.71 [15.36, 16.05] 1.94

VS 131 28.18 [27.75, 28.61] 2.52

77

Table 14. Statistical summary of mean collision duration on the static obstacle task.

Agent Trials Mean (ms) CI 95% Std. Dev.

S 114 147 [89, 204] 310

P 111 342 [22, 462] 669

VS 118 0 [0, 0] 0

These results indicate that Agent P (with a priority-based arbiter) is the fastest

and riskiest agent. Agent VS (with a vector summation arbiter) is the slowest and

safest. This result is directly attributable to arbiter logic. The Agent P took a more

direct route between targets since its GotoXY behavior was “winning” or “active” since

it was allowed to publish the action which was executed most of the time. Avoid only

overruled (i.e. had a higher priority than) GotoXY at the last possible instance to

avoid collisions. Agent P exhibited jerky, erratic, and error-prone behavior since

actions changed rapidly. By contrast, Agent VS incorporated recommendations from

Avoid at all times through its summation mechanism. The resulting behaviors were

much more smooth and gave obstacles ample clearance. The smoothness of action

made this agent a logical choice for further flight testing since the agent is less likely

to make an erratic, unsafe movement. This conclusion does not rule out Agent 2 as

useful, however. Depending on the application, the need for speed, and severity of a

“collision” state, the priority agent could be preferable over Agent VS.

4.1.2 Dynamic navigation results.

The dynamic obstacle navigation task was the same as the static version with

the addition of a dynamic obstacle which traveled back and forth along a line. The

experiment consisted of six data collections with approximately 100 total runs for

each agent. Figure 22 depicts the mean collisions duration and Figure 23 present the

78

mean time on task for each agent.

Agent P Agent S Agent VS
0

200

400

600

800

1000

1200

1400

1600

1800

M
e
a
n
 C

o
lli

s
io

n
 D

u
ra

ti
o
n
 (

m
s

Figure 22. Bar chart depicting mean collision duration per run of the dynamic obstacle

navigation task for each agent.

Agent P Agent S Agent VS
20

21

22

23

24

25

26

27

28

29

30

M
e
a
n
 C

o
u
rs

e
 T

im
e

(s

)

Figure 23. A bar chart depicting mean time to complete the dynamic obstacle naviga-

tion task for each agent.

79

Tables 15 and 16 present a statistical analysis of agent mean time on task and

collision duration respectively for the dynamic obstacle navigation task.

Table 15. Statistical summary of mean completion time on the dynamic obstacle task.

Agent Trials Mean (s) CI 95% Std. Dev.

S 125 23.22 [22.48, 23.96] 4.00

P 111 21.62 [20.81, 22.45] 2.44

VS 118 28.75 [28.45, 29.06] 5.52

Table 16. Statistical summary of mean collision duration on the dynamic obstacle task.

Agent Trials Mean (ms) CI 95% Std. Dev.

S 125 936 [781, 1090] 872

P 111 1472 [1211, 1733] 1388

VS 118 6 [0, 19.17] 70

Again, Agent VS was the safest and Agent P was the fastest. All agents were

slowed by the additional obstacle and incurred more collisions, but not dramatically

more. Most collisions were on the new dynamic obstacle. This could be due to the fact

that only the position and not the trajectory of obstacle was considered for avoidance

maneuvers. More sophisticated behavioral logic which predicted the obstacle’s future

position and maneuvered accordingly could address this shortcoming.

The dynamic navigation task was intended to assess the robustness and behavioral-

flexibility of the designed UBF agents. No modifications were made to agent logic

despite the addition of a new type of dynamic obstacle. The ability to cope with dy-

namic, unpredictable environments is a key requirement for autonomous UAS. Any

difference in the mean collision duration per run or mean time to complete a course

would indicate how robust an agent was to the modification of this task. Figures

80

24 and 25 show the performance differences of each agent between the static and

dynamic tasks.

Agent P Agent S Agent VS
0

5

10

15

20

25

30

35

40
P

e
rc

e
n
t
d
if
fe

re
n
c
e
 i
n
 M

e
a
n
 T

im
e

Figure 24. Bar chart comparing percent difference in mean agent time between the

static and dynamic obstacle navigation tasks. Lower is better.

Agent P Agent S Agent VS
0

100

200

300

400

500

600

P
e
rc

e
n
t
d
if
fe

re
n
c
e
 i
n
 M

e
a
n
 C

o
lli

s
io

n
 D

u
ra

ti
o
n
 p

e
r

R
u
n

Figure 25. Bar chart comparing percent difference in mean collision duration per run

between the static and dynamic obstacle navigation task. Lower is better.

These figures indicate that Agent VS was the most robust to the additional,

dynamic obstacle since runs were only approximately 3% longer and collision duration

increased only slightly. The Agent S, the subsumption agent, was the least robust as

mean run-time increased by over 10% and the percent increase in collision duration

was nearly 14%.

81

4.1.3 Barrel Race results.

The barrel race task involved navigating a three-point course along a set path

while avoiding collisions with simulated barrels at each point. This task required the

addition of the orbit behavior to allow agents to round the barrels, which permitted

the use of an additional arbiter in the behavioral hierarchy. This additional arbiter

choice increased the test space from three to nine agents composed of permutations

of arbiter type. Since velocity limits were imposed on agent movements, variability in

time on task was largely due to differences in the agent’s path. Agents that flew close

to the barrels saved distance, and therefore time, but also were at risk of collisions.

Despite these competing interests, agents rarely collided with the barrels during the

100 runs comprising the experiment. This result is likely due to the sparse distribution

of obstacles on the course. Individual agents could have been tuned to reduce the

barrel turn radius, but a fixed set of parameters were chosen so that each agent could

be compared on an objective basis. The performance of the nine agents tested is

shown in Figures 26 and 27 below.

82

Agent P/P Agent P/S Agent P/VS Agent S/P Agent S/S Agent S/VS Agent VS/P Agent VS/S Agent VS/VS
20

22

24

26

28

30

32

34

36

38

40

M
e
a
n
 C

o
u
rs

e
 T

im
e

(s

)

Figure 26. Bar chart depicting mean time to complete the barrel race task for each

agent.

Agent P/P Agent P/S Agent P/VS Agent S/P Agent S/S Agent S/VS Agent VS/P Agent VS/S Agent VS/VS
0

200

400

600

800

1000

1200

1400

M
e
a
n
 C

o
lli

s
io

n
 D

u
ra

ti
o
n
 (

m
s

Figure 27. Bar chart depicting mean collision duration per run on the barrel race task

for each agent.

83

As with the navigation tasks above, agent time on task is well modeled by a normal

distribution as indicated by a chi-squared test for normality. Since obstacles were

spread out and there are no dynamic obstacles, there were fewer factors influencing

agent times. Thus, the variance of these agents was typically much less than in the

navigation tasks. Tables 17 and 18 present a statistical analysis of agent mean time

on task and collision duration respectively for the barrel race task.

Table 17. Statistical summary of mean completion time on the barrel race task.

Agent Trials Mean (s) CI 95% Std. Dev. (s)

S/S 85 28.09 [27.87, 28.32] 1.03

S/P 93 27.99 [27.78, 28.20] 1.02

S/VS 91 35.58 [34.06, 37.09] 7.28

P/S 96 27.80 [27.60, 28.00] 0.99

P/P 93 27.84 [27.66, 28.03] 0.91

P/VS 80 36.98 [35.59, 38.37] 6.24

VS/S 112 20.45 [20.43, 20.47] 0.13

VS/P 119 20.38 [20.36, 20.41] 0.13

VS/VS 107 25.76 [25.72, 25.81] 0.24

84

Table 18. Statistical summary of mean collision duration on the barrel race task.

Agent Trials Mean (ms) CI 95% Std. Dev. (ms)

S/S 85 724 [656, 793] 318

S/P 93 975 [892, 1059] 406

S/VS 91 344 [191, 497] 736

P/S 96 1270 [1161, 1379] 539

P/P 93 1269 [1159, 1379] 533

P/VS 80 167 [59, 274] 484

VS/S 112 0 [0,0] 0

VS/P 119 0 [0,0] 0

VS/VS 107 0 [0,0] 0

These results indicate that Agent VS/P and Agent VS/S, consisting of a com-

bination of vector summation and priority-based paradigms, to be the fittest agents

in the cohort with significantly faster times and no collisions. Interestingly, Agents

P/VS and S/VS, the “inverse” Agents of VS/P and VS/S, were the least fit. The

relationship between “inverse” agents is an interesting result. The P/VS and S/VS

agents were slowed considerably as they approached the barrels by erratic, oscillatory

movement toward and away from the barrel caused by the higher priority-based ar-

biter switching between a behavior that pulled the agent closer (gotoXY) and one that

pushed the agent away (avoid). By contrast, the VS/P and VS/S Agents experience

a smoother transition between the gotoXY and avoid behaviors due to the vector

summation arbiter. These results demonstrate that arbiter logic and organization

both influence agent performance.

85

4.1.4 Discussion and Summary.

In general, the vector summation, or potential field methodology, based agents

performed safely, i.e., did not exhibit erratic movement which could cause loss of

vehicle control, and were able to complete the assigned tasks. These agents flew

smoothly, generated fewer hits, and still flew relatively fast. This result was expected

since potential field approaches have long been shown to be effective in simple, local

navigation tasks. The fact that a combination of paradigms proved most fit was an

unexpected conclusion.

To illustrate this effect, Figure 28 depicts the typical path of Agent VS/S, a mixed

paradigm agent, versus Agent VS/VS, a pure paradigm agent.

The “pure” vector agent runs the course very smoothly at the expense of being

overly conservative. The mixed agent followed a more direct path to the next barrel

and remained close to barrels during a turn because only the Orbit behaviors were

active. These results seem to imply that no single reactive paradigm, embodied by the

S/S, P/P, and VS/VS Agents, is dominant, even for a relatively simple, navigation-

based task.

Based on these results, the primary experimental objective, which was to deter-

mine which reactive robotic paradigm produces the fittest agents on the navigation-

based tasks, was satisfied. For these tasks, a specific combination of vector summation

and priority based paradigms performed best on the barrel race task. The results for

the navigation tasks were less clear, but indicated that some priority based approaches

are faster and less safe and potential field approaches are slower and more safe. While

a combination of paradigms may not always be optimal, this experiment demonstrates

that some tasks do benefit from flexibility in arbiter logic and organization. Since the

UBF supports many arbiter types and arrangements it follows that it is an improve-

ment over traditional reactive paradigms both in terms of flexibility and performance

86

-8 -6 -4 -2 0 2 4 6 8

X Position (m)

-2

0

2

4

6

8

10

12

14

Y
 P

o
s
it
io

n
 (

m
)

-10 -8 -6 -4 -2 0 2 4 6 8

X Position (m)

-2

0

2

4

6

8

10

12

14

Y
 P

o
s
it
io

n
 (

m
)
Agent VS/P

Agent VS/VS

Figure 28. Comparison of Agent VS/P trajectory (top) with Agent VS/VS (bottom)
over 25 runs.

87

in some behaviors. Furthermore, all agents were capable of completing the given tasks

indicating that the implementation itself is viable for simulated agents.

4.2 Experiment 2: Flight Test Validation of the Behavior-Flexible UAS

Development Platform

The following sections present the results of the second experiment of this research.

The experiment consisted of seven tests flights which established the regulatory com-

pliance of the platform (IQ4) and compared the performance of simulated and physical

UBF agents (IQ5). The following analysis is intended to analyze variation in agent

performance between the two domains by characterizing the flight controllers of each

and then comparing the agent performance on the navigation-based task. The section

begins with an analysis of controller performance and control loop rate statistics of

the tf_agent.

4.2.1 Controller Performance Comparison Results.

Tables 19 and 20 summarize the performance characteristics of each controller.

Table 19. Controller vertical motion performance statistics comparison between an
emulated and real controller. Percent difference is calculated with simulated results as
a baseline.

Simulated Actual Difference
RMSE Position Hold (m) 0.01 0.06 500.0%
RMSE Path Following (m) 0.04 0.28 600.0%
Rise Time (s) 2.47 3.80 53.8%
Latency (s) 0.25 0.52 116.0%
Frequency Cutoff (rad/s) 0.68 0.59 -12.3%

The real controller experienced significantly more positional error, as measured by

the root-mean-square-error (RMSE) between the desired setpoint and actual position,

in both the vertical and horizontal plane. Both controllers exhibited an increase in

RMSE from the offboard_example position holding task to the circle_agent path

88

Table 20. Controller horizontal motion performance statistics comparison between an
emulated and real controller. Percent difference is calculated with simulated results as
a baseline.

Simulated Actual Difference
RMSE Position Hold (m) 0.05 0.34 629.0%
RMSE Path Following (m) 0.12 0.87 621%
Rise Time (s) 2.82 2.21 -21.6%
Latency (s) 0.66 1.12 69.7%
Frequency Cutoff (rad/s) 0.71 1.09 -54.2%

following task. Interestingly, the percent difference of RMSE between position hold

and path following tasks stayed relatively constant. This result suggests that position

control loop tuning parameters, which determine how responsive the multirotor is to

error between actual position and desired setpoint, did not contribute significantly to

variation in overall agent performance. If these tuning parameters had contributed,

one would expect a larger difference between the static and dynamic cases since, in

the static case, error due to a sluggish response would average out as the vehicle

remained at the desired setpoint. In the dynamic case the error would accumulate.

Thus, variation in controller positioning error from simulation to reality is likely due

to a combination of differences in the tuning parameters of the attitude controller,

airframe characteristics, and simulation fidelity.

In general, the simulated controller was slightly more responsive, with a faster rise

time and lower latency compared to the actual controller. The variation in system

response between the domains is likely the result of simulation inaccuracies and tuning

parameter differences. Overall, observed controller performance differences are small

and contributed little to variance in agent performance between simulation and flight

testing.

One controller performance aspect which significantly impact positional accuracy

was the stability of the Local Position Estimator (LPE) estimator. Position estimates,

delayed by networking latency, were occasionally dropped by the estimator since

89

they were over 0.2 seconds old. During dropouts, position estimates rapidly diverged

causing the aircraft to momentarily jerk. A few dozen timeout events would occur

during each flight with events lasting around a 0.5 to 1.0 second. Since flight testing,

the PX4 development team have chosen to deprecate the estimator, in favor of the

Extended Kalman Filter Version Two (EKF2) estimator, because of these stability

problems.

Overall, variation in positional error between simulation and reality had the great-

est contribution to overall variation in agent performance. The first step in reducing

this variation would be to switch the platform to the EKF2 estimator, which would

increase the stability of local position estimates, and decrease networking latency,

which would reduce the number of dropped position estimates from the motion cap-

ture system. Second, finer tuning of flight controller control loop parameters might

yield slightly better performance. For these flight tests, relatively low controller gain

values were used to increase stability at the cost of reducing the reactiveness of the

flight controller. Notwithstanding these potential performance increases, a certain

level of variation between simulation and reality is unavoidable without more perfor-

mant control strategies for the vehicle or higher fidelity simulation.

Table 21 summarizes the control loop rate statistics between simulated and actual

controllers.

Table 21. Controller rate statistics comparison between an emulated and real controller.
Percent difference is calculated using simulated results as a baseline.

Simulated Actual Difference
Samples 27,406 37,638 N/A
Mean Loop Rate (Hz) 100.37 100.00 -0.37%
Loop Rate SE (Hz) 0.65 0.54 -0.20%
Min Loop Rate (Hz) 46.20 90.38 96.63%
Max Loop Rate (Hz) 120.78 111.39 -7.77%

For non real-time systems, both controllers maintained very consistent loop rates.

90

Both systems achieved a mean loop rate within 0.4 Hz of the target loop rate of 100

Hz with standard deviations less than one hertz. Interestingly, the variance for the

simulated controller tended to be higher than that of hardware. This is most likely due

to the PX4 being emulated on a non real-time system versus being run on real-time

hardware. Although the complexity of behavioral logic certainly has an effect on the

ability of the onboard processor to meet the target loop rate, no noticeable difference

in mean controller loop rate was observed across different behavior sets. As more

computationally intensive nodes (such as computer vision and planning algorithms)

are added to the base ROS system, the responsiveness and stability of the controller

could be impacted negatively

4.2.2 Agent Performance Comparison Results.

The following section addresses qualitative and quantitative performance differ-

ences between simulated and real UBF agents. Three agents were flown during flight

testing: Agent VS, Agent VS/P, and Agent VS/VS. Since safety was a primary con-

cern, these agents were selected for the smooth, predictable motion demonstrated in

simulation. Figures 29, 30, and 31 depict observed agent trajectory in the various

scenarios.

Figure 29 demonstrates that Agent VS approaches the obstacles in the same man-

ner in both simulation and reality. Both agents extend out, in positive X, to approx-

imately five meters and up to approximately six meters in positive Y. This result

suggests that for a static course flown at slow speeds, simulated results may have

high predictive capability for real world-behavior. Figure 30 highlights a problem

with the generalizability of simulated results however. In the simulated run, the

agent was unable to complete the course due to getting caught in a local minimum.

The actual agent was able to complete the run, likely due to the random motion of

91

-3 -2 -1 0 1 2 3 4 5

X position (m)

-3

-2

-1

0

1

2

3

4

5

6

Y
 p

o
s
it
io

n
 (

m
)

Figure 29. Comparison of simulated Agent VS trajectory (blue) with actual trajectory
(orange) on the static navigation task.

-3 -2 -1 0 1 2 3 4 5

X position (m)

-4

-3

-2

-1

0

1

2

3

4

5

6

Y
 P

o
s
it
io

n
 (

m
)

Figure 30. Comparison of simulated Agent VS trajectory (blue) with actual trajectory
(orange) on the dynamic navigation task.

92

-6 -4 -2 0 2 4 6 8

X position (m)

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y
 p

o
s
it
io

n
 (

m
)

-6 -4 -2 0 2 4 6 8

X position (m)

-6

-4

-2

0

2

4

6

Y
 P

o
s
it
io

n
 (

m
)

Agent VS/P

Agent VS/VS

Figure 31. Comparison of Agent VS/P and Agent VS/VS trajectory in simulation
(blue) and during flight test (orange) on the barrel race task.

93

the vehicle“dislodging” the agent from the local minimum near (2,-2). Initially, both

agents seem to proceed to this minimum before diverging.

Figure 31 is significant because it demonstrates the performance of two different

agents on the same task. Differing arbiter logic clearly had an effect on agent perfor-

mance in both simulation and flight test. Agent VS/P stayed much closer to barrels

than Agent VS/VS just as predicted by simulation. In terms of the agent trajectory,

the simulated behavior appears to agree with observed performance.

Tables 22 and 23 present the quantitative performance metrics for this experiment.

Table 22. Comparison of real and simulated agent mean completion time on several
navigation tasks. Percent difference is calculated using simulated results as a baseline.

Task - Agent Simulated Actual Difference
Barrel race - Agent VS/VS (s) 105.12 63.84 -35.5%
Barrel race - Agent VS/P (s) 125.8 76.61 -39.1%
Dynamic navigation - Agent VS (s) DNF 19.39 -
Static navigation - Agent VS (s) 22.29 34.50 55.8%

Table 23. Comparison of real and simulated agent mean collision duration on several
navigation tasks. Percent difference is calculated using simulated results as a baseline.

Task - Agent Simulated Actual Difference
Barrel race - Agent VS/VS (ms) 264 627 137.5%
Barrel race - Agent VS/P (ms) 891 429 -51.9%
Dynamic navigation - Agent VS (ms) 0 0 0%
Static navigation - Agent VS (ms) 0 891 -

The quantitative agent performance metrics in this experiment, e.g. time on task

and collision duration, show considerable variance in quantitative agent performance

across domains. Additionally, there is no apparent trend since the real agents were

faster in some tasks and slower in others and incurred more collision duration in some

tasks and not in others. The cause of this variance is not clear and is likely due to a

myriad of confounding factors between simulation and flight test. The first, and likely

largest factor, is the high positional error of the real controller. The high positional

94

error, coupled with estimator instability, contributed to the “noisy” path that real

agents took. This noisy path was, at times, beneficial to real agents. In figure 31

simulated Agent VS/P nearly gets trapped in a local minimum near the first barrel

whereas the real agent did not. Another potentially significant factor is simulator

fidelity. The multirotor dynamics model used in the simulator is only approximate

which might explain the differing trajectories observed.

4.2.3 Discussion and Summary.

The objectives for this experiment were three-fold. The first was to validate that

the platform is safe, stable, and compliant with testing regulations. During the flight

test experiment, seven successful flight tests were conducted. With the help of a safety

pilot, the multirotor was able to achieve, maintain, and terminate flight safely. During

flights, the safety pilot was able to transfer control to an from the onboard agent in a

reliable and timely fashion. Additionally, a reliable GCS connection was maintained

throughout each flight. Although the platform is not yet mature, its compliance in

these safety critical requirements will allow future testing of the system.

The second objective was to determine the degree to which simulated agent per-

formance generalizes to real-world performance. In terms of qualitative performance,

agent behavior was relatively similar across domains as evidenced by the similarity

of agent trajectory during tasks. While the trajectories observed in flight tests were

noisier than simulated results, the general shape of the path taken by the agents were

basically the same. In terms of qualitative performance, however, there was much

more variance between agent domains.

The causes for this variance are likely multivariate and warrant further study. Pos-

sible sources of variance are fidelity of the simulation, the fidelity of PX4 emulation,

controller tuning parameters, differences between the vehicles, and the estimator sta-

95

bility. The objective was met since this experiment showed that simulation is useful

for making coarse-grained predictions, such as the general path the agent will take,

but starts to break down for finer-grained predictions like completion time and the

precise path the agent will follow.

The third objective was to compare controller performance between the domains.

Both sets of loop rates were remarkably stable with regard to their target rate of 100

Hz. Actual hardware slightly outperformed simulation due to the real-time capability

of the Pixhawk. In terms of performance, the simulated controller held position in

the vertical and horizontal planes extremely well compared to the actual controller.

The simulated controller was slightly more responsive than the actual hardware, but

only by fractions of a second. These results indicate that differences between the

emulated and actual controller contributed much of the observed variance in agent

behavior between the domains.

Finally, and most importantly, the results of this series of flight tests show that

the hypothesis is true. The UBF implementation in ROS was demonstrated to be

a viable, behavior-flexible platform for physical multirotors. This experiment carries

forward the results of the first experiment to the real-world, showing that real-world

agents are capable of executing dynamic, unstructured tasks. Furthermore, while

simulations are not perfect reflections of reality, they are similar enough that useful

predictions of real world agents can be made on the basis of simulated behavior.

96

V. Conclusion

The objective of this research was to assess the feasibility of creating a behavior-

flexible UAS development platform from open-source software components. To ad-

dress this research question, the UBF was integrated with a state-of-the-art robotic

software framework and open-source flight controller. The results show that agents

running on this platform are largely predictable on the basis of their simulated re-

sults, responsive to the environment based on the observed controller performance,

and capable of competently executing tasks as evidenced by agent performance on the

navigation task set. This thesis also documents the first use of a UBF agent aboard a

UAS. While the technological readiness of the platform is still in its infancy, it serves

as a foundation for further refinement and modification. This chapter recounts the

investigative questions addressed in this work along with their contributions to future

research and the DoD. The chapter concludes with recommendations for future work

and final remarks.

5.1 Summary

The first investigative question of this research established the current state-of-the-

art with regard to RSFs and open-source flight controllers. Since multirotor UAS were

the target vehicle type, a review of multirotor control strategies and a survey of open-

source flight controllers was conducted. The multirotor control problem is difficult

but capable, open-source controllers are currently under active development. The

research elected to use the Pixhawk flight controller running the PX4 firmware due

to its modular codebase and interoperability with ROS. ROS connects the Pixhawk

controller to the UBF behavior logic. The decision to use ROS as the RSF of choice

was made after an comprehensive survey of RSF projects. ROS represents one of the

97

most mature and well supported RSFs currently available. ROS provides a capable

middleware for a large number of components and algorithms that are free to use

and already proven. Additionally, the debugging, logging, and introspection tools

provided by ROS were an invaluable resource throughout the research process.

The second investigative question of this research proposed a design for a behavior-

flexible development platform which integrated the UBF with the aforementioned

software components. The inclusion of ROS increased the adaptability of the system

since the addition of sensors, motors, and algorithms are facilitated by the publish

and subscribe middleware. The responsiveness of the system was enhanced by the

inclusion of the Pixhawk flight controller since the flight controller software is executed

separately from the onboard computer on a real-time system, i.e. the Pixhawk. The

distributed nature of the system also increased the safety of the platform since the

safety critical code is run on a real-time system with a backup processor. The UBF

improved the behavioral-flexibility of the system by allowing novel combinations of

reactive robotic paradigms and reuse of behaviors. These features were shown in

simulation to improve agent fitness on navigation-based tasks over traditional reactive

robotic implementations.

The third investigative question identified which reactive paradigms performed

best on a set of navigation-based tasks. In the static and dynamic obstacle navigation

tasks, the vector summation (V/S) arbiter experienced the shortest collision duration

and the priority (P) arbiter was fastest. In the barrel race task, the vector summation

with priority or subsumption arbiters (VS/P and VS/S) agents performed better than

any pure combination (e.g. a P/P, VS/VS, S/S agent). This result is significant

for two reasons. (1) The flexibility offered by the UBF in the selection, use, and

organization of arbiter logic is an improvement over traditional approaches for some

tasks and (2) potential field methodologies facilitated by the vector summation arbiter

98

produce competent UAS agents executing navigation-based tasks.

The fourth investigative question established the safety, stability, and regulatory

compliance for the platform through flight test. On seven flight tests, the UAS was

able to achieve, maintain, and terminate flight safely. The GCS connection was stable

during flights and the safety pilot was able to transfer control. Establishing this basic

compliance will expedite future testing at AFIT since a test review board (TRB) and

safety review board (SRB) will be able to reference this historical performance data

for the platform.

The final investigative question determined the degree to which simulated agent

behavior predicts actual agent behavior. For course-grained behavior, such as the

approximate trajectory the agent will take, simulation provides useful predictions of

real agent behavior. For fine-grained performance metrics, such a collision duration

and time to complete a task, simulation may not be as useful. A characterization

of controller performance identified a disparity in positional accuracy for simulated

flight controllers and real flight controller to be a significant source of error. Although

simulations do not perfectly predict real-world behavior, they are still a useful tool for

determining course-grained agent behavior. Accurate simulation is a requirement for

an autonomous development platform to ensure that agent logic is safe and correct

before risking hardware and time in flight tests.

Since each investigative question was answered in the affirmative, the hypothe-

sis was shown to be true and the research question was answered; It is possible to

develop a behavior-flexible development platform for UAS agents using open-source

software components by integrating the UBF with an RSF. The platform presented

in this work provides a behavior-flexible platform for future research efforts involving

autonomous UAS. The UBF allows researchers to quickly implement, modify, tune,

extend, and reuse UAS agents with a variety of behaviors. If additional sensors or ac-

99

tuators are required, researchers can quickly add them to the system through the ROS

middleware. The platform is also portable to different vehicle types through the PX4

flight controller. Because of these features, future research using the platform can

focus more intensely on research interests as opposed to tangential implementation

details. In addition to its research benefits, the development platform highlights the

benefits of highly modular, behavior-flexible robotic software. Using this approach

could significantly lower the cost, shorten the acquisition timeline, and increase the

usefulness of autonomous vehicles for the DoD.

5.2 Future Work

This research offers several avenues for potentially fruitful future work. Five areas

of future work are suggested below.

• Incorporate a deliberative layer on the platform to implement a hybrid de-

liberative/reactive framework adding planning capability to the development

platform.

• Incorporate a social layer on the platform to allow the agent to communicate

with other agents in a multi-agent system adding swarming capability to the

development platform.

• Migrate from ROS to ROS2. ROS2 is being developed to support real-time

robotic software and a improved, low-latency, high-bandwidth communication

middleware called Real-time Publish and Subscribe [47].

• Explore the portability and extensibility of the platform by incorporating addi-

tional sensors and testing agents on different vehicle types.

• Explore metaheuristic optimization techniques, e.g. genetic algorithms, to de-

sign and tune agents.

100

5.3 Final Remarks

Future autonomous vehicles will be responsible for an ever growing set of tasks

in military, civil, industrial, and exploratory applications. As these systems are en-

trusted with more complex and important missions, the need predictability, respon-

siveness, and robustness will grow as well. Thus, the behavioral-flexibility of these

systems will become a highly desirable trait, allowing the maximum utility to be

extracted from each development effort. Behavioral-flexibility allows designers to re-

fine agent behavior, augment existing systems with additional components, and reuse

proven software in new applications. The platform designed, implemented and tested

in this work address each of these concerns and while it is immature and imperfect,

it represents a small contribution in an increasingly important and relevant field of

study. Further refinement of this platform, and other unified platforms like it, offer

tremendous flexibility for designers to employ new vehicles, sensors, deliberative and

social algorithms, and behaviors without concern for many of the low-level concerns

which may have slowed progress in the past.

101

Bibliography

1. B. G. Woolley and G. L. Peterson, “Unified behavior framework for reactive
robot control,” Journal of Intelligent and Robotic Systems: Theory and
Applications, vol. 55, no. 2-3, pp. 155–176, Jul 2009. [Online]. Available:
http://link.springer.com/10.1007/s10846-008-9299-1

2. R. C. Leishman, J. Macdonald, R. W. Beard, and T. W. Mclain, “Quadrotors &
Accelerometers,” Control Systems Magazine, pp. 1–51, Feb 2014.

3. R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory and Practice.
Princeton: Princeton University Press, 2012.

4. “USAF Strategic Master Plan,” USAF, 2015.

5. D. S. Board, “Summer Study on Autonomy,” USAF, 2016.

6. “China issues guideline on artificial intelligence development,” The State Council
of the DPRC, Jul 2017.

7. “’Whoever leads in AI will rule the world’: Putin to Russian children
on Knowledge Day,” Russia Today, Sept 2017. [Online]. Available: https:
//www.rt.com/news/401731-ai-rule-world-putin/

8. D. Tennenhouse, “Autonomous Vehicles: Are You Ready
for the New Ride?” MIT Technology Review Insights,
2017. [Online]. Available: https://www.technologyreview.com/s/609450/
autonomous-vehicles-are-you-ready-for-the-new-ride/

9. J. L. Hardcastle, “Why Automakers, Tech Giants are Investing Millions in Au-
tonomous Vehicles,” 2015, https://www.environmentalleader.com/2015/11/why-
automakers-tech-giants-are-investing-millions-in-autonomous-vehicles/.

10. M. Weisgerber, “http://www.govexec.com/feature/slow-and-steady-losing-
defense-acquisition-race/,” 2015. [Online]. Available: http://www.govexec.
com/feature/slow-and-steady-losing-defense-acquisition-race/

11. R. N. Charette, “What’s Wrong with Weapons Acquisitions,” 2008,
https://spectrum.ieee.org/aerospace/military/whats-wrong-with-weapons-
acquisitions.

12. M. J. Sullivan, “DOD Is Taking Steps to Address Challenges Faced by
Certain Companies,” GAO, Tech. Rep. GAO017-644, 2017. [Online]. Available:
https://www.gao.gov/assets/690/686012.pdf

13. “LRASM,” Jul 2016, https://www.lockheedmartin.com/us/products/LRASM.html.

102

14. GAO, “Assessments of Selected Weapon Programs.” Report to Congressional
Committees, vol. GAO-15-342, no. March, pp. 1–194, 2015.

15. M. Endsley, “Autonomous Horizons: System Autonomy in the Air Force
- A Path to the Future,” USAF, p. 27, 2015. [Online]. Available:
http://www.af.mil/Portals/1/documents/SECAF/AutonomousHorizons.pdf

16. P. Fitzpatrick, E. Ceseracciu, D. E. Domenichelli, A. Paikan, G. Metta, and L. Na-
tale, “A middle way for robotics middleware,” Journal of Software Engineering
for Robotics, vol. 5, no. September, pp. 42–49, 2014.

17. P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot genes,”
Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45, 2008.

18. G. Metta, P. Fitzpatrick, and L. Natale, “YARP: Yet another robot platform,”
International Journal of Advanced Robotic Systems, vol. 3, no. 1, pp. 043–048,
2006.

19. “ArduPilot Homepage,” 2016, http://ardupilot.org/.

20. L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based multithreaded
open source robotics framework for deeply embedded platforms,” 2015 IEEE
International Conference on Robotics and Automation, pp. 6235–6240, 2015.

21. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Mg, “ROS: an open-source Robot Operating System,”
Icra, vol. 3, no. Figure 1, p. 5, 2009. [Online]. Available: http:
//pub1.willowgarage.com/{∼}konolige/cs225B/docs/quigley-icra2009-ros.pdf

22. S. S. Lin, “Unified Behavior Framework in an Embedded Robot Controller,”
Master’s thesis, AFIT, 2009.

23. D. Roberson, D. Hodson, G. Peterson, and B. Woolley, “The Unified Behavior
Framework for the Simulation of Autonomous Agents,” Master’s thesis, AFIT,
2015.

24. A. Elkady and T. Sobh, “Robotics Middleware: A Comprehensive Literature
Survey and Attribute-Based Bibliography,” Journal of Robotics, vol. 2012, p. 15,
2012. [Online]. Available: http://dx.doi.org/10.1155/2012/959013

25. J. Kramer and M. Scheutz, “Development environments for autonomous mobile
robots: A survey,” Autonomous Robots, vol. 22, no. 2, pp. 101–132, Jan 2007.
[Online]. Available: http://link.springer.com/10.1007/s10514-006-9013-8

26. N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Middleware for Robotics:
A Survey,” in 2008 IEEE Conference on Robotics, Automation and
Mechatronics. IEEE, Sept 2008, pp. 736–742. [Online]. Available: http:
//ieeexplore.ieee.org/document/4681485/

103

27. R. R. Murphy, AI Robotics. Cambridge: The MIT Press, 2000.

28. N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “Experimental evaluation
of multirobot aerial control algorithms,” pp. 56–65, 2010. [Online]. Available:
http://ieeexplore.ieee.org/document/5569026/

29. H. Lim, J. Park, D. Lee, and H. J. Kim, “Build your own quadrotor: Open-source
projects on unmanned aerial vehicles,” IEEE Robotics and Automation Magazine,
vol. 19, no. 3, pp. 33–45, 2012.

30. J. McCarthy and P. J. Hayes, “Some philosophical problems from the standpoint
of artificial intelligence,” Machine Intelligence, vol. 4, no. 463-502, pp. 463–502,
1969.

31. V. Braitenberg, Vehicles: Experiments in Synthetic Psychology. MIT Press,
1986.

32. R. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE
Journal on Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986. [Online].
Available: http://ieeexplore.ieee.org/document/1087032/

33. R. C. Arkin, “Motor Schema-Based Mobile Robot Navigation,” The International
Journal of Robotics Research, vol. 8, no. 4, pp. 92–112, 1989.

34. B. G. Woolley, “Unified Behavior Framework for Reactive Robot Control in Real-
Time Systems,” Master’s thesis, AFIT, 2007.

35. E. Gamma, Design patterns : elements of reusable object-oriented software.
Addison-Wesley, 1995. [Online]. Available: https://books.google.com/books/
about/Design\ Patterns.html?id=iyIvGGp2550C

36. D. J. Hooper, “A Hybrid Multi-Robot Control Architecture,” Master’s thesis,
AFIT, 2007.

37. J. P. Duffy, “Dynamic Behavior Sequencing in a Hybrid Robot Architecture,”
Master’s thesis, AFIT, 2008.

38. R. Mahony, V. Kumar, and P. Corke, “Multirotor Aerial Vehicles: Modeling,
Estimation, and Control of Quadrotor,” IEEE Robotics & Automation Magazine,
vol. 19, no. 3, pp. 20–32, 2012.

39. A. Tridgell, “ArduPilot and DroneCode,” 2016,
https://discuss.ardupilot.org/t/ardupilot-and-dronecode/11295.

40. “PX4 Documentation,” 2017, dev.px4.io/en.

104

41. P. Inigo-Blasco, F. Diaz-Del-Rio, M. C. Romero-Ternero, D. Cagigas-Muniz, and
S. Vicente-Diaz, “Robotics software frameworks for multi-agent robotic systems
development,” Robotics and Autonomous Systems, vol. 60, no. 6, pp. 803–821, Jun
2012. [Online]. Available: http://dx.doi.org/10.1016/j.robot.2012.02.004http:
//linkinghub.elsevier.com/retrieve/pii/S0921889012000322

42. G. Biggs and B. Macdonald, “A Survey of Robot Programming Systems,” Pro-
ceedings of the Australasian conference on robotics and automation, pp. 1–3, 2003.

43. J. Altmann and F. Gruber, “Using mobile agents in real world: A survey and
evaluation of agent platforms,” . . . for Agents, MAS, and . . . , 2001.

44. N. Ando, T. Suehiro, and T. Kotoku, “A software platform for component based
RT-system development: OpenRTM-Aist,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 5325 LNAI, pp. 87–98, 2008.

45. H. Bruyninckx, “Open robot control software: the OROCOS project,” Proceed-
ings 2001 ICRA. IEEE International Conference on Robotics and Automation
(Cat. No.01CH37164), vol. 3, pp. 2523–2528, 2001.

46. “MAVLINK Common Message Set,” http://mavlink.org/messages/common.

47. OMG, “The Real-time Publish-Subscribe (RTPS) Wire Protocol DDS
Interoperability Wire Protocol Specification v2.2,” 2014. [Online]. Available:
http://www.omg.org/cgi-bin/doc?formal/09-01-05.pdf

48. “X8 User Manual,” 2014, https://3dr.com/wp-content/uploads/2017/03/X8-
Operation-Manual-vA.pdf.

49. “Rasberry Pi Homepage,” https://www.raspberrypi.org/.

50. “BeagleBone Black Homepage,” https://beagleboard.org/black.

51. “Odroid-XU4,” http://www.hardkernel.com/main/products/.

52. “Pixhawk Autopilot Documentation,” https://pixhawk.org/modules/pixhawk.

53. C. Hendrix, M. J. Veth, and R. W. Carr, “LQG Control Design for a Hovering
Micro Air Vehicle using an Optical Tracking System,” 2009. [Online]. Available:
https://www.afit.edu/ANT/news.cfm?na=detail{\&}ncat=ANT{\&}item=188

54. “ROS Documentation,” 2017, http://wiki.ros.org/.

55. “Gazebo,” 2017, http://gazebosim.org/.

56. P. Roduit, A. Martinoli, and J. Jacot, “A quantitative method for comparing tra-
jectories of mobile robots using point distribution models,” in Intelligent Robots
and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on. IEEE,
2007, pp. 2441–2448.

105

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2018 Master’s Thesis Sept 2016 — Mar 2018

Behavior Flexibility for Autonomous Unmanned Aerial Systems

Bodin, Taylor B., 2d Lt., USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-18-M-011

Intentionally left blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

The goal of this work was to assess the feasibility of a behavior-flexible development platform for UAS. This work first
establishes the current state-of-the-art with regard autonomy frameworks, robotic software frameworks RSF, and flight
controllers for UAS, components necessary for a development platform. The work then proposes a design incorporating
the Unified Behavior Framework (a modular, extensible autonomy framework), the Robotic Operating System (an RSF),
and PX4 (an open-source flight controller). Using the platform, the work then identifies a combination of autonomous
robotic control strategies which are effective for small-scale navigation tasks in simulation. Finally, the work provides a
partial validation of the simulated results through flight test. The development platform presented in this work is shown
to be robust, responsive, and behavior-flexible both in simulation and reality.

UBF, Reactive Robotics, UAS, Autonomy

U U U U 119

Maj. Jason M. Bindewald, Ph. D., AFIT/ENG

(937) 255-3636, x4614; jason.bindewald@afit.edu

